
An Integrated Network and System Management Framework
based on Adapted Software Components

Martin H. Knahl Udo Bleimann Holger D. Hofmann
Steven M. Furnell Fachbereich Informatik ABB Research Centre
Network Research Group University of Applied Sciences ABB
University of Plymouth 69425 Darmstadt 63115 Heidelberg
Plymouth PL4 8AA Germany Germany
United Kingdom E-Mail: bleimann@fbi.fh-darmstadt.de E-Mail: h.hofmann@web.de
E-Mail: martink@soc.plym.ac.uk

 stevef@jack.see.plym.ac.uk

Keywords

Integrated Network and System Management,
Reusability, Componentware, Computer Networks

Abstract.

Componentware represents an evolutionary step in
software development which adds a new packaging
granularity to object-oriented systems: software
components. Such as components in other sciences or
technical domains, software components facilitate reuse
even across application domains and allow the
realisation of nearly any distribution scenario. In
Integrated Network and Systems Management (INSM),
the subjects to management are distributed.
Furthermore, the heterogeneity of managed components
often requires specific adaptations to the management
software. The INSMware framework approach proposed
throughout this paper achieves a maximum level of
manageability by combining INSM with
componentware. Software components by default are
immutable which would even hinder minor adaptations
to the management system or management semantics. To
overcome this architecture-inherent limitation of
componentware, we integrate the Component Adapter
approach to INSMware, which allows the integration of
even semantically incompatible software components.

1 Introduction

Nowadays, distribution represents a system-
inherent criterion for software and hardware systems.
Hardware as well as software components are to
collaborate in large-scale environments such as the
Internet and thus create new challenges in managing
both. We develop the concept of integrated network and
system management (INSM) and propose INSMware, a
framework which provides component-based INSM,
managing both hardware and software components [8].

Traditional management software is monolithic:
stand alone applications performing all necessary
functions. This paradigm is reaching its limits in terms
of code reusability, extensibility, configurability and
especially concerning the speed and size development.

One reason for this is that traditional development
approaches require the application to contain the entire
functionality even if much of it is only required for very
specific tasks. This paradigm also requires extensions to
the design to be carried out and integrated by an
application developer familiar with the system (typically
the original developer). However, it is the user, not the
developer, who is often the one most familiar with the
application domain and aware of required extensions.
The natural consequence of this would be to provide an
interface that allows the user to add new functionality to
the monolithic block and that defines a migration path
towards compound applications.

Software components provide a different approach
to the development process. Like a child with LegoTM

building blocks, one can build a compound software
application by using several elemental blocks – software
components – rather than a monolithic entity. Once the
application has been built, it has similar functionality
but has the advantages of being distributable, scalable,
configurable and can be modified by adding or replacing
components. Configurability in this context means to
use components or component-based applications in
more than one application domain by setting parameters
affecting the component's behaviour. Component
software aims to provide an architecture to tailor
individual needs easily and at low cost. The Latin
proverb ‘Divide et Impera’ can now be changed to
‘Build and Manage’.

2 Software Components and Adaptation

The concept of software components goes back to
1969 when McIlroy envisioned an industry of reusable
software components and introduced the concept of
formal reuse though the software factory concept [9].
The idea behind the concept of software components
was and is to use self-contained, pre-fabricated and pre-
tested units in order to build more complex units or
entire applications.

As there is no agreed formal definition of a
software component [13], we will first present the
definition that forms the basis for our work: a software
component is a piece of software with one or more well-
defined interfaces that are configurable, integrable and

immutable [4]. This definition highlights the
immutability of software components. Though it
guarantees black-box reuse [2], immutability can lead to
static caller relationships between software components,
a lack of system configurability, and poor support of
object-oriented reuse mechanisms such as
implementation inheritance [12]. Thus, the physical
shape of software components highly influences their
reusability.

The driving force behind the use of pre-fabricated
components, be it in computer science or other domains,
has always been reuse. Reuse relies a great deal on the
availability of descriptions of entities to be reused.

Figure 1 shows a taxonomy of reuse potentials with
respect to adaptability and modifiability.

Modif iabi l i ty

A
daptability Sof tware

Componen t

C lassObject

Des ign
Pattern

Object-
Oriented

Appl icat ion

Reu
se

 Po
ten

tial

Class

Figure 1: Taxonomy of Reuse Potentials

At one extreme we have classes, which exist in the
form of modifiable source code. The reuse potential of a
class is very high as one can always change the class’
source code to meet the requirements of the developer.
Objects, on the other hand, are adaptable, not
modifiable, entities. An object exists only at runtime as
an instance of a class and cannot be modified. However,
an object’s state and its relationships with other objects
can be changed at runtime. Design Patterns [2] exist in
graphical and/or textual format, and like classes, can be
modified. Because a Design Pattern is dedicated to a
specific use, it has very limited adaptability.

Object-oriented applications, i.e., applications that
have been developed using object-oriented techniques,
also have limited adaptability. Moreover, they are not
modifiable since they exist in an immutable physical
shape. It may come as a surprise to find software
components at the lower left end of our taxonomy of
reuse potentials. But a closer scrutiny reveals that
software components share the same characteristics as
object-oriented applications. They come in an
immutable physical shape, having been implemented on
distributed object-oriented architectures such as
CORBA [11] and DCOM [1]. They provide, at most,
limited support for the differential reuse mechanisms:
inheritance, aggregation, and delegation, and are
therefore not very adaptable either.

Software components are reused by composition
[10], which means the grouping of a set of components
to form a new component or even an application. The
components are integrated on a common composition
layer and communicate by exchanging messages. The

interaction of these components is controlled by a
control logic. Software comp onent composition requires
component compatibility. If components that are to be
composed are not compatible, i.e., they are not able to
collaborate because of interface or semantic reasons, the
composition language can be used to realise component
compatibility. We call this concept adaptation.

Let Corg be a component to be adapted that contains
the implementations Ij,)Ij the adapting implementation,
and operator ρ an operation to combine Ij with)Ij. Then
the adapted component Cadapt can be defined as:

Cadapt = Corg ρ)I with)I = {I1 ρ)I1, ..., In ρ)In}
The following criteria for software component

reuse and adaptation mechanisms have been identified:
transparency of use, black-box characteristics,
configurability, reusability and architecture
independence and efficiency [6]. As adaptation
functionality at the level of a composition language is
not reusable, it is not an appropriate mechanism for
software component adaptation.

To cope with this problem, we apply the concept of
Component Adapters [5]. Component Adapters are
software components which represent a specific view of
one or more software components to client components
and which act as surrogates for these.

The incoming interfaces of a Component Adapter
represent a view required by client components while its
outgoing interfaces are connected to the incoming
interfaces of server components to be used to realise the
Component Adapter's functionality. The interface
members of the Component Adapter can be mapped to
one or more implementations provided by the server
components. Depending on the implementation of the
Component Adapter, these caller relationships can be
changed at runtime or can be statically assigned at the
time of development.

CA S e r v e r

CA

S e r v e r

CA S e r v e r

S e r v e r

S e r v e r

C l i e n t

L a y e r 1

L a y e r 2

L a y e r 3

Figure 2: Component Adapter Usage Scenario

The mapping of incoming to outgoing interface
members is installed by configuration and includes
possible parameter and return type conversions. Though
it is possible to do an automatic data conversion for
elemental data types such as integer or float, the
mapping of complex data types has to be configured by
the user. Without any data conversion facilities only
server components forming part of a subtype/supertype
relation with client components could be used by the
Component Adapter. Figure 2 shows a usage scenario of
Component Adapters in which the approach is used
recursively.

The design of Component Adapters is based on a
combination the structural Design Patterns [15] [2]:
adapter (adaptation of object interfaces), decorator
(addition of functionality to existing implementations),
facade (provision of high-level interfaces to sub-
systems), and the behavioural Design Pattern mediator
(centralisation of control). This makes it possible to
change communication paths between software
components, to define new interfaces to existing
implementations, and to centralise the required
implementation for the adaptation (control logic) in one
place without the necessity of modifying the concerned
components.

The integration of the Component Adapter
approach with a component management architecture
such as discussed in [5] provides flexibility in
integrating self-developed software components with
pre-fabricated components and supports systems
evolution. This means that even software components
that were unknown at the time of the management
system's development can be slightly integrated with it.
The major benefit of using a management system
together with Component Adapters is that software
components to be managed neither have to provide
specific management functionality nor specific
management interfaces.

3 Component-Based Integrated Network
and Systems Management

The terms network, systems and applications
management stand for all precautions and actions taken
to guarantee the effective and efficient use of hardware
and software resources of distributed systems and their
underlying communication networks [3]. Several
management architectures have been proposed and
standardised as a basis for integrated management (e.g.,
SNMP based TCP/IP management, Telecommunications
Management Network by the ITU). Management
platforms that integrate different management
applications are available on the market (e.g., IBM
Tivoli TME/10 Management Framework). However, the
proposed management architectures and platforms do
not provide integrated management solutions for
network management of LANs and WANs and for their
different requirements on systems management. They
generally represent management toolboxes with
differences in middleware, management protocols or
incompatible management applications. Given the
diverse technologies and vendor specific
implementations in today’s heterogeneous networks, the
management architecture itself becomes a
heterogeneous mixture comprising different
management applications and platforms.

Networks
Systems
Applications

INSM Management

Engine

Management
Services
Domain

FCAPSFCAPS

QoSQoS

MultimediaMultimedia

Framework
Interfaces

ManagementManagement
SystemSystem

EnterpriseEnterprise
AplicationAplication

WorkflowWorkflow

Management
Actor
Domain ManagerManager

BB
ManagerManager

AA
ManagerManager

CC

Figure 3: Management Framework

One attempt to address this problem could be to
provide a single system capable of providing all
Network and Systems Management services. Such a
system is referred to as an Integrated Network and
Management System. The problem with these is that
they are very complex and therefore expensive and
processor intensive. The Management Framework itself
must be a distributed system with open interfaces, where
the required management services are put together to
provide the required management functionality (see
Figure 3). Furthermore, open interfaces are required to
provide interoperability to other management and
enterprise applications and to expand the management
framework to meet future requirements. Therefore, we
propose a new comp onent-based Management
Framework [7].

The impact and leverage of distributed systems
technology is prevailing not only for design and
implementation of applications but also for the
deployment of management systems. Thus far,
management systems have typically been of two
categories. Either specialised along one dimension, e.g.,
vertically targeting one or a few management aspects,
e.g., configuration, billing or security or horizontally
dedicated to management of a specific layer, e.g.,
network elements. Alternatively, they have resembled
monolithic "main frames" based to a large extent on
proprietary solutions. The presented research uses
contemporary componentware technology to leverage a
modular approach to the design of management systems,
thus facilitating openness and extensibility on one hand
and adaptability, i.e., customisation of management
services, on the other.

The distribution of component-based systems
mirrors the distribution of managed hardware/software
components. We have already argued that a component-
based approach does not inevitably guarantee
reusability. We argue that this deficiency can be
overcome by using Component Adapters that also allow
for the integration of legacy components/applications
into the management system.

As mentioned before, the conventional
Management Systems cannot meet the needs of today’s
rapidly changing network systems. To make the system
flexible to change, we propose a new style of the
network management system, in both the development
and operation phases. We call it “Componentware
Integrated Network and System Management”

(INSMware), as it uses the component-oriented
approach for building and running the Integrated
Management System [7] [8]. Our component-oriented
Management System solves the problems of
heterogeneous management protocols and can help
reducing development costs.

The component-oriented software approach frees
the developer from cumbersome coding, as the
componentware based approach provides integration
and customisation of Software components. This
enables rapid and efficient system development, since
tool software handles and validates much of the integrity
of the system, but not a human.

4 INSMware

Limitations and restrictions of existing Network
and System Management frameworks such as
distribution of the management services and adaptation
and integration of new management services can be
overcome by providing a component-based approach [7]
[8].

INSMware is a componentware-based framework
for Integrated Network and System Management. We
provide a component-based development approach
meeting requirements for integrated management
services. There are two versions of INSMware: one
implementation is using CORBA [11], the other is based
on DCOM[1]. This allowed us to study both middleware
architectures in detail.

Database
Component

Communication
Component

Front-End
Administrator

Legend

A B

Component A calls member
functions of component B
(A is a Client of B).

Front-End
User

Event
Controller

 Management
 Interface

Figure 4: INSMware Components and Connectivity

The design of the individual INSMware
components (see Figure 4) is based on a domain
specification that subdivides the entire application
domain into subdomains. First, the data processing
system requires a connection to a data source. This is
realised by the Management Interface comp onent that
exists in several different forms, similar to the device
drivers of an operating system. It is configurable as
required for different data sources.

The Management Interface component interprets
the received data. It is filtered and analysed, and the
component notifies the event controller when particular
pre-defined exceptional states occur. Data storage is
accomplished by a call to the database component and
user notification is effected via communication
components. It should be emphasised that all
information about the users that need to be notified, e.g.,
access to user, user’s role regarding the monitored
processes, are stored within the system. The

communication component itself consists of a set of
several sub-components that again implement sub-
domains, for example, faxes, voice mails, e-mails. The
user can visualise system states using the front-end user
component and can maintain the system by using the
front-end administrator component.

Filter
component

INSMware

SNMP driver

SNMPv2 driver

file system driver

Management domain
specific components

Intranet

Management Interface

Intranet

Figure 5: Management Interface Component

In our approach, a new management protocol can
be installed by merely adding a new management
domain specific component that represents the protocol
into the Management Interface. This means that the
protocol-handling part of the Management System is
usually encapsulated to one component. This
strengthens the adaptability of the component-oriented
NMS to new management protocols, as the developer
only has to develop the communication component
specific to the new protocol. Therefore, we use a driver
concept for the Management Interface that consists of
the specific management domain and generic Filter
component as shown in Figure 5.

4.1 Integration of Security Component

In any application domain, all data in the
INSMware system is stored using the database
component. To prevent unauthorised access to security-
relevant data, clients must encrypt data before being
transmitted to a database component that then decrypts
it. Similarly, the database component must encrypt the
data to be transmitted while client components have to
decrypt the data. It was decided to add this functionality
to the INSMware system, which means that four
existing components, namely, the database component,
the event controller component, the front-end user
component, and the front-end administrator component
have to be modified and re-built. These changes are not
required if the additional functionality is integrated into
the INSMware system in the form of Component
Adapters via surrogate substitution. We demonstrate this
using the DCOM version of INSMware.

Two approaches are possible:
 i. realisation of the required security

functionality inside a Component Adapter
 ii. realisation of the required security

functionality by a separate software
component that can be used by a Component
Adapter.

Approach (i) implies that the security functionality
has to be realised in the programming language in which
the Component Adapter is implemented. This restricts

the reusability of the security functionality to one
particular programming language. Approach (ii) allows
to possibly reuse the provided security functionality not
only by the Component Adapter, but also by several
other software components. Coming from these two
scenarios, we chose to realise approach (ii) because of
reusability issues.

When realising approach (ii) either a security
component can be developed from scratch or a software
component can be purchased on the market that meets
the requirements. We decided to develop our own
security component to be able to reuse it in our various
management domains. One demand for the realisation of
a security component was the integrability with the
development tools used. As these tools were ActiveX-
capable, i.e., Microsoft ActiveX components could be
integrated with these, we decided to implement the
security component as an ActiveX component. ActiveX
is a part of the Microsoft DCOM architecture that allows
the realisation of scripting-capable software
components.

Figure 6 shows the integration of a security
component into INSMware. A client component
accesses a Component Adapter that encrypts the data
and sends it to a Component Adapter located on the
same host as the database component. The second
Component Adapter decrypts the data and sends it to the
database component. After processing the client request,
the database component transmits the results to the local
Component Adapter that encrypts the data and sends it
to the client-located Component Adapter. Finally, the
results are decrypted and transmitted to the client
component.

Component
Adapter

Client
Component

Database
Component

 Security
 Component

Encryption

Decryption

Component
Adapter

Security
Component

Decryption

Encryption

Figure 6: Component Adapter Integration

Both Component Adapters are located locally to the
adapted software components. This location constraint is
obvious as data transmission between the adapted
components and their associated Component Adapter is
still insecure. This does not represent a problem to local
inter-component communication while this is not
acceptable for remote communication.

The integration of Component Adapters with the
INSMware system implies that every client of the
database component, i.e., the event controller
component, the front-end user component, and the front-
end admin istrator component, accesses a client-located
Component Adapter instead of directly accessing the
database component. This integration is transparent to
all client components and can be dropped if necessary.

Implementing a separate security component
optimises the reusability of implemented algorithms, but

its integration to a system may adversely affect the
system’s performance since the number of inter-
component communications necessarily raises.

The Component Adapters must implement the
interface of the software component to be adapted and
expose this interface to client components. In the case of
the INSMware system, this is the interface of the
database component.

Component

 sends a message

(A is client of B).

Front-End
User

Event
Controller

Front-End
Administrator

Database

Legend:

Component A

to component B

A B
Component Adapter (Client-Side)

Component Adapter (Server-Side)

Security
Component

Security
Component

Figure 7: INSMware Component Adapter Integration

Two Component Adapters, one for the client and
one for the server side, are required. On the client side,
data has to be encrypted before being sent to the server-
located Component Adapter and data has to be
decrypted after results being received from the server-
side Component Adapter. The reverse behaviour is
required on the server side.

The Component Adapters are integrated into the
INSMware system by surrogate substitution and thus are
transparent to client components. Each component of the
INSMware system that accesses the database component
does so through a client-side Component Adapter that
communicated with a server-side Comp onent Adapter.
This is shown in Figure 7.

4.2 Management of SW Components

Component monitoring provides data about the
run-time state of a set of software components. Data
such as server host utilisation and memory usage of
software components can be monitored. Without the use
of Component Adapters, software components would
have to be especially designed and implemented for the
use within the management framework. This would far
limit the components that can be used within our
management environment. With Component Adapters,
software components, with or without individual
monitoring facilities, can be integrated and managed.

CA MAMC CA

Host 1 Host 2

Management System
Legend:
CA Component Adapter
MA Management Agent
MC Managed Component

Figure 8: Component Adapters - Component Monitoring

Figure 8 shows two types of software component
monitoring. In Host 1, a Component Adapter directly
monitors a managed software component (MC). This

approach can be applied if a MC supports monitoring
functionality or if the Component Adapter gathers
information about a component by making calls to its
operational interface. In Host 2, the Component Adapter
monitors a management agent (MA) that gathers
information about a software component’s environment,
for example, the number of running processes or
software component instances on a particular host, the
operational status of hardware components (e.g.,
on/off/stand-by).

Using the Component Adapter approach,
monitoring software components can be easily
integrated with new or existing management systems. If,
for example, Component Adapters implement a Simple
Network Management Protocol (SNMP) interface [14],
they can be integrated with any SNMP-compliant
management system.

Along with the distribution of management
components comes a distribution of management
knowledge. In particular scenarios, it may be required
that elemental management tasks are performed by local
management components while complex tasks that
might require user interaction may be co-ordinated by a
central authority.

5 Conclusions and Outlook

Our work with INSMware has shown that a
distribution of management software and thus of
management knowledge can help in mastering the
inherent complexity of distributed hardware/software
systems. The realisation of management systems as
componentware, i.e., software entirely composed of
immutable pieces of software called "software
components", can significantly support software reuse in
this domain. In a scenario where normally the
management software would have to be adpated to
changing requirements, we propose the use of the
Component Adapter concept. The latter helps to
integrate and configure even incompatible software
components and supports a common denominator on the
software level.

For particular application domains, pre-fabricated
Component Adapters may exist providing specific
interfaces to managed components or to management
systems. Other scenarios might require custom adapters
whose development could be supported by libraries or
code skeletons providing basic functionality.

6 References

[1] N. Brown, C. Kindel. Distributed Component
Object Model Protocol - DCOM/1.0 . Microsoft
Corporation, Network Working Group, 1996.

[2] E. Gamma, R. Helm, R. Johnson, J. Vlissides.
Design Patterns — Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1994.

[3] H. Hegering, S. Abeck, B. Neumair. Integrated
Management of Networked Systems. Morgan
Kaufmann, 1999

[4] H.D. Hofmann. Componentware — Integration of
Software Components in Distributed Computing
Environments. M.Sc. Thesis, Cork Institute of
Technology/Ireland, 1997.

[5] H.D. Hofmann, J. Stynes. Implementation Reuse
and Inheritance in Distributed Component Systems.
Proceedings of Twenty-Second Annual
International Computer Software and Applications
Conference (COMPSAC'98), Vienna/Austria,
1998.

[6] H.D. Hofmann, J. Stynes, G. Turetschek. Software
Reuse by Adaptation. Proceedings of the Second
International Network Conference (INC 2000) .
University of Plymouth: Plymouth, UK.

[7] M. H. Knahl, H.D. Hofmann, A. D. Phippen. A
Distributed Component Framework for Integrated
Network and System Management. Information
Management and Computer Security, 7(5), pp. 254-
260, MCB University Press, Bradford/UK, 1999.

[8] M. H. Knahl, U. Bleimann, H.D. Hofmann, S. M.
Furnell. 2000. An Integrated Management
Architecture for Heterogeneous Networks:
INSMware. In: Jajszyczyk, Andrzej (Editor),
Proceedings of the IEEE Workshop on IP-oriented
Operations and Management (IPOM '2000).
September 2000. pp. 111-118.

[9] M.D. McIlroy. Mass-produced software
components. In J.M. Buxton, P, Naur, and B.
Randell (editors), Software Engineering Concepts
and Techniques, pp. 88-98, 1968 NATO
Conference on Software Engineering, 1976.

[10] O. Nierstrasz, S. Gibbs, D. Tsichritzis. Component-
Oriented Software Development. Communications
of the ACM, 35(9), pp. 160-165, 1992.

[11] OMG. The Common Object Request Broker:
Architecture and Specification, Revision 2.2. OMG
Document 98-07-01, Object Management Group,
Inc., 1998.

[12] M. Sakkinen. Inheritance and Other Main
Principles of C++ and Other Object-oriented
Languages. PhD thesis, University of
Jyvaeskylae/Finland, 1992.

[13] J. Sametinger. Software Engineering with Reusable
Components. Springer, 1997.

[14] Stallings, William. SNMP and SNMPv2: The
Infrastructure for Network Management. IEEE
Communications: Management of Heterogeneous
Networks, 36(3), 1998.

[15] W. Zimmer. Relationships between Design
Patterns. Proceedings of PLoP '94 - Pattern
Languages of Programs, Addison-Wesley, 1995.

