
Chapter 3: Internet and Applications

169

Service based software construction process

M.Zinn

Network Research Group, University of Plymouth, Plymouth, United Kingdom
e-mail: marcuszinn@gmx.de

Abstract

A lot of software development procedures include methods of resolution, which correspond to
several kinds of problems. Some of these procedures have properties, which open the
possibility to combine different procedures to solve bigger problem areas. The development of
these procedures heightens the problems and complexity for the developers, architects and
customers.

The motivation of the author is the development of a method of resolution, which includes:

• the advantages of today ‘s well-known software developing features and
• a service oriented approach combined with
• a component and service oriented approach.

The objectives of this research are:

• to reduce the known problems of software development,
• increase software quality and
• decrease (development) software complexity.

To reach this objective, this paper shows a software construction process as an alternative. The
bases of the process are a model driven development approach and a component based
software development, using new defined and type based services to provide and use
components. Basically seven state of the art software development procedures will be analysed
and classified. The focus of analyse is set on the component based procedures and the
advantages of all analysed procedures. The result is a definition of a Service based Software
Construction Process (SSCP) and a scenario for future research tasks for the author, which are
based on using Model Driven Development and Component Driven Development inside the
SSCP.

The research, on which this paper is based, and the paper itself show that such a development
procedure, with service specialisation, is possible and achieves the requirements.

Keywords

Procedure Model, Services, Software Construction, Model Driven Development,
Component Based Software Development, Software Development Procedure

1. Introduction – State of the art software development

After careful consideration of “state of the art” software development models, a
multitude of popular models can be found. All of them have different orientations. A
common classification of these methodologies is not available at the moment. But
these models can be described by analyzing their objectives. The following section

Proceedings of SEIN 2007

170

shows the objectives of a selection of todays accepted software development
methodologies:

• Feature Driven Development
• Model Driven Development
• Agile Software Development
• Adaptive Software Development
• Extreme Programming
• Component based Software Development
• Service oriented Software Development

(Models are chosen from the articles of the journal ”Upgrade“ (edition 08/2003
“Software Engineering State of an Art”, (CEPIS, 2003) and edition 10/2004
“Software Process Technology” (CEPIS, 2004)) and the Website of Martin Fowler
“The New Methodology” (Fowler, 2005). They are exemplary for other accepted
procedures.)

Feature Driven Development (FDD) and Model Driven Development (MDSD)
demonstrate different ways to collect (customers) requirements. These requirements
can be verified more precisely and can then be (automatically) transformed into a
software product. FDD focuses on the feature-requirement definition. Each feature
must be specified and every loop of software development iteration builds a feature
or a set of features. MDD builds the set of requirements by defining a domain
specific language and use this language to describe all requirements. An additional
set of transformation rules must be given to (automatically) transforming them into
source code artefacts. According to literature, the complete software development
process is not being described by these two methodologies. The software developers
can decide for themselves, which kind of procedure they want to use inside of FDD
or MDSD. (Derniame and Oquendo, 2004; Meimberg and Petrasch, 2006;
Björkander, 2003)

Another scenario is shown by the Agile Software Development methodology. The
aim is to improve the efficiency of a complete software development process. For
that purpose, Agile Software Development sets priorities on the aims and the aims
supporting services, principals and methodologies. These preferred values are
compared to the standard “bureaucratic methods and approaches”. There are no
technical rules given by this methodology. All approaches and methodologies are
arbitrary and are used only to reduce the “red tape”. There are a lot of other
methodologies, which have linked themselves to the Agile Software Development.
(Derniame and Oquendo, 2004; Paulk, 2001; Highsmith and Cockburn, 2001)

Adaptive Software Development (ASD) for example gets close to the agile process
and tracks the objectives (like extreme programming (XP) and FDD) to get results by
using transient and fast realisable software development phases. (Derniame and
Oquendo, 2004; Highsmith and Cockburn, 2001)

The aim of the last group of methodologies is to construct software by developing
and combining software components. In this group the accepted methodology is

Chapter 3: Internet and Applications

171

Component Based Software Development (CBSD) (Stojanović, 2005) shows a
analyse of other component based software development approaches, especially the
revised form: Service Oriented Software Development (SOSD). The difference
between these CBSD and SOSD is that the SOSD amplifies the CBSD with the
basics of grid computing and service oriented architecture. Both methodologies focus
on the development of components and their interfaces by the use of conventional
procedures of software development. CBSD and SOBD dictate no rules on how to
create and test components. Regardless the chosen methodology, it is important that
a development process is chosen, which allows the implementing and testing of
interfaces. (Cechich and Piattini-Velthuis, 2003; Apperly et al. 2003)

 Positive attributes Negative attributes
Feature Driven
Development

Motivation for developers
• Good Controlling
• Milestones can be understood by
non-developers
• short time to market

• Missing long time controlling

Model Driven
Development

• Independent from platforms and
procedures
• Flexible in development
• Process oriented
• Domain specific languages for
communication between all parties
• Tool based

• Creativity of developers can
disappear
• Deficiency of UML2.0 are
Missing standards for MDSD tools

Agile Software
Development

• Incremental
• Cooperative
• Linear process
• Adaptive
• Meta procedure

• project leader must choose the
right agile procedures for the
specific tasks

Adaptive
Software
Development

• Incremental
• Iterative
• For complex projects
• Tool based

• without controlling the system can
easily get out of control

Extreme
Programming

• Cooperative
• Communication
• Short time iterations

• Developers can easily get into
“keen competition”

Component
based Software
Development

• Tool based
• Adaptive

• Components often have to be
adapted, before reuse
• 100% reuse is rare

Service
oriented
Software
Development

• good architecture for component
• Good experiences with system
interations

• To less technical implementations
• Difficulties with many of data to
transport

Table 1 - Typical positive/negative attributes of common development

procedures

Companies often mix some of these methodologies to achieve an added value by
letting their different aims complement each other. As an example the literature
suggests to combine the exact requirement acquisitions of the MDSD with the
variable procedures of the agile software development (Stojanović, 2005). By use of

Proceedings of SEIN 2007

172

this approach the resulting agile software development process includes as few as
possible adaptation iterations of the given requirements. The typical advantages
which are hoped for by the use of this combination is a better adaptability of the own
software development process and a saving of resources.

Basically, the following statements can be made by considering the advantages and
disadvantages of the given development procedures and the analyse results of
component based development procedures of (Stojanović, 2005):

1. Today’s software development procedure models are process oriented and
depend on the use of tools.

2. The actual processes can be combined in different ways and can be used
together to build a software development procedure. This attribute
suggests that future software development methodologies have to be
combinable with other methodologies. The combining of different
software development procedures can be described as meta software
development procedures.

3. Most development procedure models build upon conventional software
development and define themselves as software development procedures
or -processes.

4. Procedures must be flexible and adaptable to specific domains and
problems.

In comparison of the shown software development procedures with these statements,
one procedure differs from the rest: Component based construction procedures (for
example CBSD and SOSD). Because of the objective is to assemble components to a
software system or to a higher aggregated component this is called Software
Construction Process (McConnel, 2005).

(Fettke, 2002) and (Stojanović, 2005) show that there are only a small number of
possible procedures in this area. In addition, these procedures do not adapt the
attributes of other methodologies (like agile or adaptive development). It seems that
software construction procedures, like CBSD, do not have the ability to compete
against other procedures, because specific attributes are missing. (Stojanović, 2005)
discusses this problem and shows a new component and service based approach.
Especially for construction processes in relation to future technologies, these
attributes can be very important. The European Union, for example, increased the
subsidies for research in grid computing. The ambition is to become the leading
union in this technology sector (De Roure et al. 2006). Technologies like grid
computing support service based technologies and procedures.

There is the question, whether a software construction process, which includes most
advantages and attributes of today’s software development methodologies, can be
defined. Additional such a software construction process has to be based on a service
approach.

The following sections will analyse component- and service oriented software
development as an example of construction procedures. In addition, the concept of

Chapter 3: Internet and Applications

173

model driven development will be explained, because the new process will be based
on this approach. Afterwards a process will be illustrated, which represents the
method of resolution for a new kind of construction process. At the end of the
document a concrete scenario will be presented, which includes a description of the
authors research task.

2. Software Construction Procedures and Model driven

Development

The idea to construct software, which means to build software by combining
different components, is not a new idea. (Szyperski, 1999; Fettke, 2002) The basis of
software construction are components, because components will be fit together to
build software or a system. The literature shows (Fettke, 2002) that there was no
standard definition for the term “component” till a short time ago. Today’s
discussion and research groups got a standard definition. The Gesellschaft für
Informatik e.V.(GI) published the following component definition:

“A component consists of different kinds of software artefacts. It is reusable,
complete, marketable, offers well-defined interfaces, hides its implementation and
can be combined with other components which are not known at the developing
time.” (Ackermann and Fettke et al. 2002)

CBSD and SOSD are the today’s preferred kind of software construction. To define a
new software construction process, the basic rules and advantages of these
procedures must be shown and analyzed.

2.1. CBSD

As shown before, the CBSD focuses on building large software systems by
combining pre-built software components. CBSD embodies the “buy, don’t build”
philosophy. This means, if a component is missing, it can be delivered by another
component publisher. (Brooks, 1987) Figure 1 shows the typical activities and states
of the development of components and software construction in CBSD. To get a
common understanding of component based software development, the activities will
now be explained.

Figure 1 – Activities and states of component software development according

to (SEI, 2007)

Proceedings of SEIN 2007

174

2.1.1. Component qualification (SEI, 2007)

In this activity, previously-developed components, whose properties fit the
requirements, will be searched. These components are able to work in the new
system context. Selecting a component can be very difficult. This activity can be
divided into two phases: discovery and evaluation. The discovery phase includes the
identification of the searched properties. There are also common properties, which
are difficult to discover: reliability, predictability and usability. Additional “non-
technical” properties have to be considered. For example vendor's markets share,
past business performance, and process maturity of the component developer's
organization. During the evaluating phase the discovered components have to be
checked against the given requirements. The literature shows different standardised
ways to discover and evaluate components by defining quality characteristics. See
(ISO/IEC, 2001) and (Poston, 1992) for further information.

2.1.2. Component adaptation (SEI, 2007)

Because most of the time, parts of components do not fit exactly on the requirements,
they have to be adapted with other components. To minimize the conflicts between
components, some rules have to be considered (Valetto, 1995):
“white box, where access to source code allows a component to be significantly
rewritten to operate with other components”,
“grey box, where source code of a component is not modified but the component
provides its own extension language or application programming interface (API)”,
“black box form of the component is available and there is no extension language or
API”.

2.1.3. Assembling components into systems (SEI, 2007)

The next step in the CBSD activities is to assemble components. The basis for this
component construction is an infrastructure, given by the architect. Typical
infrastructure systems are: Databases, Blackboard, Message Bus, Object Request
Broker (ORB), Common Object Request Broker Architecture (CORBA). The
result of this activity is a software system.

2.1.4. System evolution (SEI, 2007)

The written or evaluated components must be includable into the system. This step
must be planned at the beginning of the project. This also includes several short- and
long-term considerations, which have to be involved into the project plans. For
example:

• Requirements: Usually pre-existing components will be used to assemble a
software product. These pre-existing components were built with pre-
existing, and possibly unknown sets of requirements. With general
requirements at assembly time, these components have to be minimally
changed for use, or not changed at all. Most of the time, a pre-existing
component doesn’t exactly match the given requirement. In the worst case,

Chapter 3: Internet and Applications

175

the architect has the problem to find a new component or to change his
system architecture.

• Reuse of existing components. Most times the existence of components in
an organisation is not known. If Component-based system development is
used, reusable components are important. The reuse of existing components
limits the needed resources (cost, time, man hours, etc.) for a project. Often,
existing components have to be adapted.

• Architecture. The selection of standards and components needs to have a
sound architectural foundation, as this becomes the base for system
evolution. This is especially important when migrating from a legacy
system to a component-based system.

More examples can be found at (SEI, 2007).

2.2. Service oriented Software Development

The topic service oriented software development is a new one. The basic principles
are the same as in CBSD, software can be built with components. But the complete
topic is not well defined at the moment. At the current state of research SOSD is only
an idea to transfer components over services. (Stojanović, 2005) for example shows
that the idea is to use (web based) service and service oriented architecture to
manage and provide such components. The important advantage of this kind of
development is that SOA and service oriented computing (SOC) are a good way to
build flexible systems at the moment. This is very important for new development
procedures, because the components not only have to be replaceable but also the
development procedure and the system in use must have the possibilities to do this.

This section shows that two attributes are very important. The first is the definition
of components. As seen it is not easy to define what can be a component and how it
can be built. But without the definition of a component there is no way for
component based development. The second attribute is the way of how a component
can be used and published. SOSD shows a way with accepted concepts and
technologies.

2.3. About Model driven Development (Meimberg and Petrasch, 2006)

Compared to CBSD and SOSD the MDSD is not a typical kind of software
construction approach. MDSD is a model driven procedure model, which
concentrates on architecture. As seen in the introduction, the main objective is to find
a way to collect requirements and transform them (most times automatically) into
artefacts, which can be used in the development process. Basically the
methodologies of Product Line Engineering and of the agile software development
will be used. The basis of MDSD is the Model driven Architecture (MDA). MDA is a
concept which is placed between procedure models and development methodologies.
It separates the recurrent artefacts (for example definition of platforms) from the
project specific artefacts. It provides the needed artefacts of a development process
and is not contradictory to software development methodologies. MDA needs the

Proceedings of SEIN 2007

176

context of a procedure model and must be adapted to the specific procedure model,
the project itself and the project management.

(Meimberg and Petrasch, 2006) defines MDA: “MDA provides a systematic
approach for the development of software systems. A minimum of quality risk and a
maximum of automation will be created, because of a high formalism of the different
models, which will be transformed iteratively. The architecture is closely connected
with the perspectives and views, which considers the aspect of software systems
comprehensively, to get few or none amendments after the transformation.”

Figure 2 - General transformation process of MDA

Figure 2 shows the general transformation process of MDA. MDSD additionally
concentrates on:

• describing the complete system, which will be built in different models and
on

• describing each source artefact of each model.

To do this a domain specific language (DSL) will be defined and understood by the
domain specific customers and the development team (developer, architect and
designer)

The results of this process are

• a graphical representation of the models and the source artefacts as a
Platform Independent Model (PIM), based on the specific DSL,

• Transformation rules to transform,
• Source code as a Platform Specific Model based on a specific programming

language (defined in the Transformation rules).

Usually the UML 2.0 will be used to describe the PIM. The transformation rules must
be developed after the definition of the specific DSL. Through these rule sets
interfaces, methods, classes and code snippets will be created. (Bettin, 2004)
describes this as “component specification”.

3. Service based Software Construction Process (SSCP)

3.1. Overview

The previous chapter, shows the current situation of software construction. As seen,
the point is to define a software construction process, which includes the typical
attributes and advantages of today’s accepted software development methodologies
and is prepared for future technology bases. A new definition of a software

Chapter 3: Internet and Applications

177

construction process is presented in the followings section. The central statement of
this “new” process is that software can be built with components by using common
procedures and up to date technologies. Components can be provided and used by
services. To preserve the required attributes other procedures or methodologies can
be included in this methodology. In addition, the developer’s view of components
and services has to be changed. This adapted view focuses on software development
and software construction. Because of this, the role of the “software architect” gains
the focus and becomes now more of a software designer.

At the current state of research the following required attributes have to be included
in the new process (Summarised from table 1, Column “Positive attributes” in the
first chapter):

• Process oriented
• Supporting Milestones
• Possibility of short and long time iterations
• Possibility of platform and procedure independency
• Supporting Developers
• Supporting Communication between all parties
• Incremental
• Cooperative
• Component based
• Service based
• Combinable

The next section shows the structure and tasks, the new construction process has to
include when achieving the given requirements.

3.2. SSCP in detail

To achieve the requirement of combinability of other methodologies with the SSC, it
is necessary to divide the SSC into different phases. A construction process as
described should be consisting of the following three phases.

Figure 3 – Phases and artefacts of the SSCP

Proceedings of SEIN 2007

178

3.2.1. Requirement phase

The procedure, used in the requirement phase is not given by the SSCP. Every
procedure which automatically creates source code and a graphical representation
(like MDSD) is qualified for this phase. Otherwise this information has to be built
manually. All requirements for this phase are designed and collected in a domain
specific language. In addition, all given information has to be verified manually or
by provided tools. The results of this phase are two artefacts: (automatically)
designed code and (automatically) designed graphical representation or problem
description.

3.2.2. Construction phase

The software construction phase is the core part of the SSCP. In this phase finished
components will be assembled. The result is a software product or higher aggregated
components. To work with a graphical representation is necessary at this time, since
it accelerates the process and gives the process control. As shown before, the basics
of CBSD / SOSD will be used. The software designer combines all needed
components, the interface and the sequences (Sequence is equivalent to program
flow, see section “Type 4 Structure” at the end of this chapter). These components
will be published by services. Components which are not provided have to be
developed by the developers themselves (see development phase).

3.2.3. Development phase

All missing or insufficient components will be created, adapted and managed in this
phase. The choice of the development procedure model has to be made by the project
leader or the designer. The following methodologies are qualified: CBSD,
miscellaneous kinds of agile procedures and SSCP.

3.3. What is new?

The overview about the “new “development procedure poses a question: What is
new or innovative of the SSCP?

The answer to this question will become clear on closer inspection of the given
phases. In the first phase there are no new innovations, known standards can be used.
The third phase has the same attributes. At this point, software development will be
utilised to build and publish new components. The choice of the development
procedure is free. These two phases are defined to make the SSCP a complete
process and to afford the combination of different methodologies in the SSCP. The
process is ready for integration. The most interesting phase is the second one. At this
point the software designer has to construct software.

At this state of research the architect has to follow these guidelines (The guidelines
are under research. At the moment they are deduced from CBSD/MDA rules.):

Chapter 3: Internet and Applications

179

1. The result of the first phase, Source Code and graphical representation, are
the basics for the construction. By using this information, the designer can
deduce components, classes and sequences. (see (Meimberg and Petrasch,
2006))

2. The designer is allowed to use components only to build the software!
3. The designer must be able to work with aggregated (system integration

layer) and atomic (function calls) components.
4. Compliance with the guidelines of CBSD/MDA/MDSD.
5. Compliance with the definition of components and attributes - see

(Ackermann and Fettke et al. 2002).

On closer inspection these guidelines are deduced from attribute requirements for the
SSCP. To assist the designer in following these rules, special types of services will
be defined.

Figure 4 – SSCP-Service types

Each type of service will deliver special kinds of components. The definition of a
component and of a software artefact will be expanded. Individual parts of software
are also a kind of component. Figure 4 shows the four defined types of services
components: Representation (GUI), Data, Functionality and Structure. Because of
this, service types are for use in software construction. They are now called Software
Construction Services (SCS). These services and their functional range have to be
surveyed:

Type 1 – Representation: The first service type delivers one or more graphical user
interfaces (GUI). The information, this service provides can be source code, binaries
or the description of a GUI for local or remote components. Most of the older GUI
technologies are hard coded in a specific programming language. Often there is no
way to change GUI technology without high costs. New technologies for using GUIs
are based on the extensible mark-up languages (XML). The objectives of these
technologies are the description of high level GUI functions (like high colour depth,
GUI logic, animation, 2D/3D, vector graphic etc.).The added value is a light weight
GUI (like HTML) with the possibilities of a GUI used in graphical operating systems
(like windows). A high level GUI language like this is qualified for a GUI-SCS
because it only has a smidgen of data but high possibilities for the architect and the
designer.

Type 2 – Data: The second service is the Data-SCS. Data implies all information
which will be displayed, modified or used as the base of decisions. It is important
that the Data-SCS is a data query. That means there is no functionality with high

Proceedings of SEIN 2007

180

costs for generating data (see the Functionality-SCS). Behind a Data-SCS there is
only a data providing system. Data types can be simple types (for example integer,
strings, boolean etc.) or complex types (dataset, picture etc.). To transport data types
in a service most programming languages provide serialisation. This means self
defined and normal data types are serializable. Thus, the platform independence is
assured. For example, today’s web services use xml to serialize data and data types.
Data has to be stored permanently or temporarily. Each kind of software includes
possibilities to store data. There are two possibilities of storing data in software:
internal and external. Software developers use variables to store date temporarily.
The Software constructer in SSCS also uses such a method for storing data. To store
data externally, databases or storage systems will be used. For use by the software
designer, a Data-SCS is integrated in SSCP for such tasks.

Type 3 – Functionality: The Functionality-SCS represents functionality. Usually
software developers have to develop missing functionalities by themselves. When
using SSCP, the functionality comes from a Functionality-SCS. If there is no SCS,
the developer’s team has to build a new component. Today, a service is defined as a
remote executable functionality and can be used for example with web services and
web service definition language (WSDL). A Functionality-SCS can do the same
things, but also includes the properties to provide complete components. These
components can be executed local or remote. The disadvantage of local execution is
the partial loss of platform independence. In some situations, on the other hand, some
functions are so critical, that they have to run locally. In these cases a remote
execution is not possible or has many disadvantages.

Type 4 – Structure: Structure of data, classes and methods is the content of the
Structure-SCS. Theoretically the software architect designs different diagrams (for
example in UML). These will be converted into source code. Some tasks of structure
design are given to the software architect (for example interfaces) and some are
given to the software developer (for example patterns).

In the case of SSCP the question of structure is passed to the software architect. By
using atomic components (SCS-Components) to build software, the architect has to
make the structure decisions. In the SSCP it is possible to use two kinds of structures.
The first one is the outer structure. It will automatically be built as an artefact of the
requirement phase of the SSCP. This code is based on the domain specific language
defined by the software architect and the customer. The architect gets the general
information about the sequence of the program. Additionally he gets the information
about the first classes, packages and components needed for this software and the
task he has to complete. The second structure is called the inner structure and is built
by the architect himself or is provided by a service. There are two kinds of structure
definitions:

1. Code structure (for example class descriptions, patterns)
2. Component structure (for example interfaces, dependencies)

This simple classification of components and services in four basic types does not
fully correspond to the current view of components and software artefacts. Figure 5

Chapter 3: Internet and Applications

181

shows the old and the new view to components. The new view has interesting effects
on the construction process, the roles used by this procedure, and the results of the
process. To provide type based services, current technologies have to be adapted.
The initial question is, whether something new and innovative can be answered with
yes.

The objective of the research is to find out if it is possible to create the SSCP like
shown above. Another interesting question is how applicable and adaptable the new
process will be in the “real world”. To test this, a research scenario must be defined.

4. The SSCP research scenario description

The previous sections present the common structure of the SSCP. There are a lot of
possible variations of using different software development procedures with the
SSCP. To do a research into this kind of process, a concrete scenario has to be
defined. The first iteration of this scenario will focus on the second phase, its
implementation and usability. The other phases and the details of interaction have to
be given by common standards or procedures.

The SSCP will basically use Model Driven Development and Model Driven
Architecture. (It is important for the author to use a common procedure, which is
discussed in today’s established journals and scientific papers.)

MDA/MDSD also represents a well defined procedure. It uses and supports today’s
common technologies and concepts. These approaches are qualified for use, because
they are based on known methodologies and concepts. MDA/MDSD has the ability
to gather requirements and transform them into a model driven approach. The SSCP
will use:

• the definitions of MDA. (Definition of artefacts, syntax, semantic etc.)
• the typical procedures and technologies, used in MDA/MDSD. (Domain

specific languages, UML, etc.)

Figure 5 shows the scenario for the first research iteration with technologies,
concepts and procedures.

Figure 5 - Research scenario overview

Proceedings of SEIN 2007

182

In the second research iteration, the first and the third phase gain the focus in this
scenario. At this point it is important to adapt the procedures of these phases to get a
better support for the second phase, for example the use of the Y-Approach, which
also includes the testing phases, instead of the MDSD. Additional research on the
communication and the communicated artefacts between the phases is very
important.

Evaluation phases are necessary before and after of the second research iteration. In
these phases the SSCP has to be tested and proofed. There are three different kinds of
evaluations: The first one is to compare the features of the SSCP with the features of
other component based development procedures. The result is a theoretically
comparison and a list of advantages and disadvantages. The second evaluation
content is to proof the SSCP as an extension of the MDA/MDSD. It can be also
necessary to compare SSCP with other MDA based procedures, which have a similar
approach. SSCP must have some benefit for the MDA/MDSD. The third kind of
evaluation are two practical tests. The first one is to proof the practical use of the
SSCP and a known similar procedure in a fictive software development project. The
second one has to be a “real world test”. The second procedure of the first test has
also be used in this scenario for comparison. To proof the SSCP an additional
research task about evaluation of component based software development procedures
has to be added to the overall research plan.

At the current point of research, standard technologies will be used, for example
webservices for the Software Construction Services and XML based languages for
the domain specific language. During the research, service providing technologies
will be considered. At this point the new service provision approach of (Heckmann,
2007) will be proved.

5. Conclusion – Result of the current project state

This paper introduces a new way of software construction. This “new” software
construction process consists of three phases (Requirement-, Construction- and
Development phase) and contains most advantages of other common software
development procedures.

Each of these three phases is based on different software development procedures,
for example MDA or CBSD. The core of this construction process presents a new
kind of view on components and construction. This view includes, that components
and their artefacts will be provided and delivered by type based services. These types
are Data, GUI, Structure and Function. By use of these services, software can be
built and executed.

The current state of research shows, that an approach like this one is possible.
Simultaneously this paper shows a lot of future tasks to proof all requirements listed.

Chapter 3: Internet and Applications

183

6. References

Ackermann, J., Brinkop, F., Conrad, S., Fettke, P., Frick, A., Glistau, E., Jaekel, H., Kotlar,
O., Loos, P., Mrech, H., Ortner,E., Raape, U., Overhage, S., Sahm, S., Schmietendorf, A.,
Teschke, T. and Turowski, K. (2002), "Vereinheitlichte Spezifikation von Fachkomponenten”,
Gesselschaft für Informatik, wi2.wiwi.uni-augsburg.de/downloads/gi-
files/MEMO/Memorandum-final-2-44-mit-literatur-Web.pdf, (Accessed 18 April 2007), Page
1

Apperly, H., Hofman, R., Latchem, S., Maybank, B., McGibbon, B., Piper, D. and Simons, D.
(2003), “Service- and Component-based Development: Using Select Perspective™ and
UML“, Addison Wesley, Page 5-8

Bettin, J. (2004), “Model-Driven Software Development, An emerging paradigm for
Industrialized Software Asset Development", www.softmetaware.com/mdsd-and-isad.pdf,
Softmetaware Page 9, (Accessed 18 April 2007)

Björkander, M. (2003), "Model-Driven Development and UML 2.0. The End of Programming
as We Know It?”, Upgrade - The European Journal for the Informatics Professional -
“Software Engineering State of an Art”, Page 10-13

Brooks, F. P. Jr., (1987) "No Silver Bullet: Essence and Accidents of Software Engineering",
Computer 20, Chapter 10-9

Cechich, A. and Piattini-Velthuis, M. (2003), “Component-Based Software Engineering”,
Upgrade - The European Journal for the Informatics Professional - “Software Engineering
State of an Art”, Page 15-19

Council of European Professional Informatics Societies (2003), “Software Engineering State
of an Art”, Upgrade – The European Journal of the Informatic Professional

Council of European Professional Informatics Societies (2004), “Software Process
Technology”, Upgrade – The European Journal of the Informatic Professional

Derniame, J. and Oquendo, F. (2004), “Key Issues and New Challenges in Software Process
Technology”, Upgrade - The European Journal for the Informatics Professional - “Software
Process Technology”, Page 15

Fettke, P., Intorsureanu, I. and Loos, P. (2002), “Component oriented procedure pale in
comparison “, isym.bwl.uni-mainz.de/publikationen/wkba02_vorgehensmodelle.pdf,
University of Chemnitz, (Accessed 18 April 2007)

Fowler, M. (2005), “The New Methodology”,
www.martinfowler.com/articles/newMethodology.html#SeparationOfDesignAndConstruction,
(Accessed 18 April 2007)

Heckmann, B. (2007), “Service provision in a Utility Computing environment”, 3rd
International NRG Research Symposium, Network Research Group, University of Plymouth

Highsmith, J. and Cockburn, A. (2001), “Agile Software Development: the Business of
Innovation”, IEEE ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=947100, Volume: 34,
Issue: 9, Page 120 , (Accessed 18 April 2007)

Proceedings of SEIN 2007

184

ISO/IEC (2001), “Software engineering — Product quality —Part 1:Quality mode”, ISO/IEC,
Reference number: ISO/IEC 9126-1:2001(E), Switzerland, Page 3-7

Jeffery, Chair K. and De Roure, D. (2006), "Future for European Grids: GRIDs and Service
Oriented Knowledge Utilities", European Commission

McConnel, S. (2005), “Code Complete German Version”, Microsoft Press Deutschland, Page
1-5

Meimberg, O. and Petrasch, R. (2006), “Model Driven Architecture”, dpunkt, Heidelberg
Paulk, M. C. (2001), “Extreme Programming From a CMM Perspective”, IEEE,
ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/52/20852/00965798.pdf?arnumber=965798,
IEEE Software, Page 1-4, (Accessed 18 April 2007)

Poston, R. M. and Sexton, M. P. (1992), "Evaluating and Selecting Testing Tools", IEEE
Software 9, 3, Page 33-42, (Accessed 18 April 2007)

Software Engineering Institute (SEI) | Carnegie Mellon University (2007), "Component-Based
Software Development / COTS Integration", SEI Website
www.sei.cmu.edu/str/descriptions/cbsd_body.html , Sections “Component qualification”,
“Component adaptation”, “Assembling components into systems”, “System evolution” ,
(Accessed 18 April 2007)

Stojanović, Z. (2005), “A Method for Component-Based and Service-Oriented Software
Systems Engineering”, Delft University of Technology, Delft, Netherlands

Szyperski, C., Gruntz, D. and Murer, S. (2002), “Component Software – Beyond Object-
Oriented Programming. Second Edition”, Great Britain, Page 21-26

Valetto, G. and Kaiser, G. E. (1995), "Enveloping Sophisticated Tools into Computer-Aided
Software Engineering Environments", Proceedings of 7th IEEE International Workshop on
CASE. Toronto, Ontario, Canada, Los Alamitos, IEEE Computer Society Press, Page 40-48

