
Chapter 3: Internet and Applications

123

A SOA Middleware for High-Performance
Communication

M.Swientek1,2,3, B.Humm1, U.Bleimann1 and P.S.Dowland2

1University of Applied Sciences Darmstadt, Germany

2Centre for Security, Communications and Network Research,
University of Plymouth, United Kingdom

3Capgemini sd&m AG, Offenbach, Germany
e-mail: martin@swientek.org

Abstract

Systems for bulk data processing are often implemented as batch processing systems. While
this type of processing in general delivers high throughput, it cannot provide near-time
processing of data. Message-based solutions such an ESB are able to provide near-time
processing but cannot provide high throughput. This paper presents a new approach to the
problem of delivering near-time processing while providing very high throughput by adjusting
the data granularity at runtime. It describes how existing SOA middleware can be extended to
implement this approach.

Keywords

Middleware, Bulk data processing, Near-time processing, Performance, SOA

1. Introduction

Business software systems like customer-billing systems or financial transaction
systems are required to process large volumes of data in a fixed period of time. For
example, a billing system for a large telecommunication provider has to process
more than 1 million bills per day. It consists of several sub components that process
the different billing sub processes like mediation, rating, billing and presentment (see
Figure 1).

Figure 1: Billing sub processes

The mediation components receive usage events from delivery systems, like switches
and transform them into a format the billing system is able to process. For example,
transforming the event records to the internal record format of the rating and billing
engine or adding internal keys that are later needed in the process. The rating engine
assigns the events to the specific customer account, called guiding, and determines
the price of the event, depending on the applicable tariff. It also splits events if more
than one tariff is applicable or the customer qualifies for a discount. The billing
engine calculates the total amount of the bill by adding the rated events, recurring

Proceedings of SEIN 2009

124

and one-time charges and discounts. The output is processed by the presentment
components, which format the bill, print it, or present it to the customer in self-
service systems, for example on a website.

The performance requirements for such a billing system are high. It has to process
more than 1 million records per hour and the whole batch run needs to be finished in
a limited timeframe to comply with service level agreements with the print service
provider. Since delayed invoicing causes direct loss of cash, it has to be ensured that
the bill arrives at the customer on time.

The traditional operation paradigm of such a system for bulk data processing is batch
processing (see Figure 2).

Figure 2: Batch processing

Batch processing exhibits the following properties (Swientek et al., 2008):

• Bulk processing of data
A Batch processing system processes several gigabytes of data in a single
run. Multiple systems are running in parallel controlled by a job scheduler
to speed up processing.

• No user interaction
There is no user interaction needed for the processing of data. It is
impossible due to the amount of data being processed.

• File- or database-based interfaces
Input data is read from the file system or a database. Output data is also
written to files on the file system or a database. Files are transferred to the
consuming systems through FTP by specific jobs.

• Operation within a limited timeframe
A batch processing system often has to deliver its results in a limited
timeframe due to service level agreements (SLA) with consuming systems.

• Offline handling of errors
Erroneous records are stored to a specific persistent memory (file or
database) during operation and are processed afterwards.

While such a batch processing system is able to process bulk data and thus delivering
a high throughput, it is not able to deliver near-time processing. That is, the latency
of a batch processing system is high.

Chapter 3: Internet and Applications

125

Near-time processing reduces the latency of the system, that is, the time that is spent
between the occurrence and the processing of an event. In case of a billing system, it
is the time between the user making a call and the complete processing of this call
including mediation, rating, billing and presentment. From the customer point of
view, an event should be viewable in the customer self-care website shortly after the
call has been made. This requirement cannot be implemented using batch processing.

To decrease the latency of the system a message-based approach is needed (see
Figure 3), for example by utilising an Enterprise Service Bus (ESB). While this
approach provides near-time processing of data, it is not able to deliver the same
throughput as batch processing.

Figure 3: Message based processing

This paper describes a new approach to the problem of delivering near-time
processing while providing very high throughput. It is organised as follows: The next
section defines the performance attributes throughput and latency in more detail and
explains why they are contrary to each other in this case. Section 3 defines the term
data granularity and explains how throughput and latency depend on it. Section 4
describes how this approach can be implemented using Sopera ASF which provides
an open-source SOA platform. The paper concludes with a summary of the described
approach and an outlook to further research.

2. Throughput vs. latency

Throughput and latency are performance metrics of a system. We use the following
definitions of throughput and latency in this paper:

• Throughput
The number of events the systems is able to process in fixed timeframe.

• Latency
The period of time between the occurrence of an event and its processing.

In the case of bulk data processing, throughput and latency are contrary to each other
(as illustrated in Figure 4). A high throughput, as provided by batch processing, leads
to a high latency, which impedes near-time processing. On the other hand, low
latency, as provided by a message-based system, cannot provide the throughput
needed for bulk data processing.

Proceedings of SEIN 2009

126

Figure 4: Throughput vs. latency

In order to achieve near-time processing with very high throughput, we propose a
combination of both processing types (see Figure 5).

Figure 5: Combining batch processing with message-based processing

This solution should provide the best possible latency with the lowest throughput
that is still acceptable to meet the performance requirements.

3. Data granularity

Throughput and latency of the system depend on the granularity of data that is being
processed. Data granularity relates to the amount of data that is processed in a unit of
work, for example in a single batch run or an event. Haesen et al. distinguishes
between two types of data granularity (Haesen et al., 2008):

• Input data granularity
Data that is sent to a component

• Output data granularity
Data that is returned by a component

Additionally, data granularity can relate to different orientations:

• Horizontal data granularity
Refers to the amount of data or fields that is contained in a single record

• Vertical data granularity
Refers to the total number of records

The remainder of this paper focuses on vertical data granularity. No distinction is
being made regarding input and output data granularity.

Chapter 3: Internet and Applications

127

Batch processing uses a high granularity of data, which leads to high throughput and
high latency. Message-based processing uses low granularity of data, which leads to
low latency but also low throughput. The optimum data granularity would allow
having the lowest possible latency with the lowest acceptable throughput and thus
providing near-time processing of bulk data (see Figure 6).

Figure 6: Throughput and latency depend on data granularity

3.1. Variable adjustment of granularity

The granularity of the data processed in one message will be adjusted at runtime. A
middleware is needed that provides services to constantly measure the throughput
and latency of the system and to control the granularity of the data (see Figure 7). If
the throughput drops below the acceptable minimum, the granularity of the data
needs to be higher. On the other hand, the granularity can be lowered, if the
throughput of the system is above the minimum.

Figure 7: Variable adjustment of granularity

4. Implementation

This section describes how to implement the variable adjustment of data granularity
by extending the Sopera ASF platform.

Proceedings of SEIN 2009

128

4.1. Sopera Advanced Service Factory

The Sopera Advanced Service Factory (Sopera ASF) provides an open source SOA
(Service Oriented Architecture) platform, which has been developed and successfully
deployed at Deutsche Post AG. The core of the platform is the Sopera ESB. The
Sopera ESB is implemented as a distributed service bus. An Enterprise Service Bus
(ESB) is an integration platform that combines messaging, web services, data
transformation and intelligent routing (Schulte, 2002).

The main components of the Sopera ESB are the Sopera Library (SSB Library) and
the Sopera Service Management (SSM). The Sopera Library represents the service
container of the Sopera ESB and provides access for all participants, mediation of the
SOA functionality and message exchange. Sopera Management provides
functionality for monitoring the operations of the SOA platform including
performance, error handling and reporting and provides methods to control the
behaviour of the service participants.

Additional infrastructure services are provided as plug-ins. Sopera ASF includes the
following plug-ins:

• Service registries/repositories
• Security services
• Messaging/Transport services
• Orchestration/Workflow server

Sopera ASF supports different Message Queuing Server such as Apache ActiveMQ,
JORAM and IBM WebSphere MQ. In addition to the ESB, Sopera ASF also
provides an extensive tool suite based on the Eclipse IDE including editors to define
services, policies and process flows.

We will use the Sopera ASF platform to implement the adjustment of data
granularity to reduce the latency of bulk data processing as introduced in section 3.
The platform has been chosen because of its best of breed approach using open
source components. All source code is freely available. Additionally, the reliability
of the platform has been proven in a huge deployment at Deutsche Post.

The next section describes the design of the components that comprise the proposed
solution.

4.2. Component architecture

Figure 8 shows the components, which are involved in the adjustment of data
granularity at runtime.

Chapter 3: Internet and Applications

129

Figure 8: Components

The main component is the Performance Manager. It constantly measures the
throughput and latency of managed components and controls their data granularity.
Every managed component constantly sends a notification to the Performance
Manager containing its current throughput and latency. The Performance Manager
buffers the incoming notification messages and computes the current throughput and
latency of the complete business process. If the computed latency exceeds the pre-
defined limit, the Performance Manager adjusts the data granularity of the managed
components.

The communication between the Performance Manager and the managed
components will be implemented using Java Management Extensions (JMX).

4.2.1. Performance Manager

The Performance Manager is an infrastructure service and will be implemented as a
Web application, which runs inside a standard Servlet container (see Figure 9).

The Performance Manager provides the following interfaces.

• Sensor interface
The Sensor interface receives JMX (Java Management Extension)
notification messages from managed components containing their current
throughput and latency.

• Performance Manger Client interface
The Performance Manager client interface exposes the Performance
Manager Client application and is used to set the pre-defined limits for the
latency and throughput of the business process.

Proceedings of SEIN 2009

130

Figure 9: Component Performance Manager

The Performance Manager is comprised of the following sub components.

• Granularity Engine
The Granularity Engine is the core of the Performance Manager service. It
consists of the components Sensor, Controller and Configuration. The
Sensor component receives JMX notification messages from managed
components. The Granularity Engine computes the throughput and latency
of the complete business process using the notifications and compares the
computed values with the pre-defined limits stored in the Configuration
component. If the computed values exceed the pre-defined limits, the
Controller sends a message to the corresponding managed components to
adjust the data granularity.

• SSB Library
The SSB Library provides the integration of the Performance Manager in
the Sopera ASF platform. It is used to receive the notification messages of
the managed components.

• Logging
The Logging component logs all measured and computed values of the
managed components and all adjustments of the data granularity performed
by the Granularity Engine. The logs can be viewed using the Performance
Manager Client application.

Chapter 3: Internet and Applications

131

• Performance Manager Client
The Performance Manager Client application provides a user interface to set
the pre-defined limits for throughput and latency. It also offers functionality
to manually control the data granularity and to view the logs written by the
Logging component.

• Authentication and Authorisation
The Performance Manager uses the Authentication and Authorisation
services provided by the Sopera ASF platform.

4.2.2. Managed Component

The SSB Library already contains an SSM module which provides the management
functionality for a service participant. The SSM module contains several MBeans
(Management Beans), which monitor the message traffic that passes through an
instance of the SSB Library, including the average number of requests per minute,
the total number of request for a fixed time and the percentage of failed requests. The
data is available at different levels of aggregation. The ParticipantMonitor provides
data about the service participant. The ServiceMonitor and OperationMonitor
provide data about a service and an operation respectively (Sopera Operations and
Administration Guide).

Figure 10: Managed Component

We will extend the existing SSM components to measure the throughput and latency
of the service participant and add operations to control its data granularity.

The Performance Manager Adapter provides the Controller interface used by the
Performance Manager to control the MBeans of the SSM components. Additionally,

Proceedings of SEIN 2009

132

the adapter publishes notification messages containing the current throughput and
latency of the managed component.

4.3. Implementation considerations

The following considerations need to be taken into account when implementing the
proposed solution.

4.3.1. Measuring Throughput and latency of orchestrated services

In order to compute the throughput and latency of a complete business process, the
Performance Manager needs to know which services are orchestrated to compose
this business process. The Performance Manager will be able to retrieve business
process definitions from the workflow engine attributed with limits for the maximum
latency and minimum acceptable throughput. It might be necessary to extend the
utilised business process language to support these attributes including the
corresponding tools.

4.3.2. Transport of large messages

The message size cannot be arbitrarily increased because very large messages cannot
be transported efficiently by the messaging system. If the data granularity exceeds a
certain level, it might be required that the payload of the message is transported
outside of the messaging system by using FTP (File Transfer Protocol) or similar
transports.

5. Conclusion

Business software systems for bulk data processing commonly utilise batch
processing. These systems are more and more faced to also provide near-time
processing due to changed business requirements such as customer demand. While a
batch processing system is able to provide the required high throughput, it cannot
meet the requirements regarding low latency necessary for near-time processing. On
the other hand, message-based processing is able to deliver low latency but cannot
provide the required high throughput.

Latency and throughput depend on the granularity of data that is being processed.
Batch processing uses coarse-grained data and therefore exhibits a high latency.
Message-based processing uses fine-grained data, i.e. messages, and therefore
exhibits a low latency. The optimum data granularity would allow having the lowest
possible latency with the lowest acceptable throughput and thus providing near-time
processing of bulk data. We suggest that the granularity of data will be adjusted at
runtime by a middleware, which continuously measures the throughput and latency
of the system.

Sopera ASF is an adequate integration platform to implement the described
approach. The necessary infrastructure services for monitoring the throughput and

Chapter 3: Internet and Applications

133

latency of the system and for adjusting the granularity of data will be implemented as
plug-ins of the Sopera ESB.

The next step is the implementation of the proposed solution along with
comprehensive performance tests.

6. References

Chappel, D. (2004), Enterprise Service Bus, O’Reilly, ISBN 0-596-00675-6.

Haesen, R., Snoeck, M., Lemahieu, W. and Poelmans, S. (2008), “On the definition of service
granularity and its architectural impact”, CAiSE '08: Proceedings of the 20th international
conference on Advanced Information Systems Engineering, Springer Verlag, Berlin,
Heidelberg, Germany, pp. 375–389.

JMX, Java Management Extensions, http://java.sun.com/j2se/1.5.0/docs/guide/jmx/index.html,
(Accessed 29. September 2009).

Schulte, R. W. (2002), “Predicts 2003: Enterprise Service Buses Emerge”, Gartner.

Sopera ASF, http://www.sopera.de/en/home, (Accessed 10. August 2009).

Sopera Operations and Administration Guide, http://www.sopera.de/nc/en/support/bibliothek/
sopera-32/opadmin32/, (Accessed 30. September 2009).

Swientek, M., Bleimann U. and Dowland P.S. (2008), “Service-Oriented Architecture:
Performance Issues and Approaches”, Proceedings of the Seventh International Network
Conference (INC 2008), Plymouth, UK, pp. 261-269.

