
Proceedings of SEIN 2009

134

Development of a CASE-tool for the Service-Based
Software Construction

M.Zinn, K.P.Fischer-Hellmann and A.D.Phippen

Centre for Security, Communications and Network Research,
University of Plymouth, Plymouth United Kingdom

e-mail: mail@marcuszinn.de, K.P.Fischer-Hellmann@digamma.de,
andy.phippen@plymouth.ac.uk

Abstract

In today's software development, applications for computer aided software engineering
(CASE) are widespread and necessary. Most procedure models or technologies use CASE-
tools. This publication shows the conversion of the fundamental idea of service-based
software construction into a software system. The focus is set on the system architecture, the
fundamental information model and the transformation model based on it.

A goal is to represent the needed information to build up and use a CASE-tool for service-
based software construction.

Keywords

Computer aided software engineering (CASE), service-based software construction
process, software construction artefact, unit of modelling, transformation, integration

1. Introduction

Software development processes as well as the actual software development are in
many cases supported by applications (CASE-tools). Well-known CASE-tools are
e.g. Innovater, Rational Rose, Enterprise Architect und Together. Typical contents
are support modes like for example graphic user interface, information preparation,
input simplification (Wizards) and automation of process steps. (Deneva, 1999)

Some applications are single technology applications. That means these applications
usually support only one type and/or technology of software development
processes/software development in form of an executable application. Other CASE-
tools offer the possibility of extension.

Typical examples of this kind of applications are development environments. With
the consideration of Eclipse, for example, it becomes clear that various technological
approaches can be realised. These include component- and service technology as
well as software development approach models like model driven development. One
of the most important factors is the interoperability between different CASE-tools
and the supporting applications and processes (IEEE, 2007) (Garcia-Magarino and
Gomez-Sanz, 2008). (Deneva, 1999) and (Deneva and Terzieva, 1996) show that
CASE-tools are an important factor of success for approach models or technologies

Chapter 3: Internet and Applications

135

since this supports the propagation of the approach by a practical application. The
important factors are: Simplification in handling, possible integration in available
tools or environments and easiness to in understanding.

The service-based software construction process is an add-on for existing procedure
models. It supports the developer in reusing software units (classes, services and
components) and all important information like documentation and specification
which is related to these units. In addition, the reuse is supported by a transformation
model, which can transform software units into another form. This reuse is an added
value because it offers more information from a single data. Furthermore, this reuse
is build upon a new information model. As a novelty this data management and
transformation system is provided by a single service. As pointed out in a previous
publication, software development is not a question of the location of a developer or
the needed data. The question is how the developer can handle this data (Zinn, 2007).

The aim of this publication is to show which models and architecture can be used to
create a CASE-tool for the support of the service-based software construction
process. This process is the underpinning methodology. Therefore, it is necessary to
explain the basic concepts. The next section shows an overview of different models
and technologies needed for the service-based software construction. This includes
the explanation of artefacts, units of modelling, service-based software construction
procedure model, information model, transformation model and integration model
and builds a common understanding. Following this, a section demonstrates the
structure of the CASE-tool built upon the explained models and technologies.

2. Basic Concepts

2.1 Artefacts and units of modelling

For the explanation of the application shown in this publication, it is necessary to
define some terms. In the area of software development, which deals with composing
of bigger software units (McConnell, 1996), the term “unit of modelling” is used
(Wang and Fung, 2004) and (Zinn, 2008). The service-based software construction
uses components, services and classes (objects) as units of modelling (UOM). This
shows the scope of this kind of software development: Objects (Object-oriented
construction), Components (Component-based construction) and Services (Service-
oriented construction). See (Sommerville, 2007), (Szyperski et al., 2002),
(Papazoglou et al., 2007) and (W3C, 2004) for the used definitions classes(objects),
services and components.The service-based software construction process extends
the view of UOMs. As a result, a UOM is not only the implementation of a software
unit. A UOM in this area is a container for the implementation and all other
information which depends on the implementation and which is important for the
reuse. For example, (Pfleeger and Atlee, 2009) show that documentation,
specification and test information are also important for reuse. Another very
important reason for the storage of all this data is the search for UOMs. Reusing a
UOM is easier than to find it again. The “correct” search for data is very complicated
and is based on the metadata that can be used for the search. Today semantic search,
based on different ontologies, is very popular. This means data and definitions will

Proceedings of SEIN 2009

136

be connected in one database by the use of semantics. These semantics can be used
to find data entities (see (Stuckenschmidt, 2009) and (Hitzler, 2008)). Important
information of a UOM is “Transformation”. A UOM does not only contain
describing information, but also supports to carry information which can transform
UOM data. A transformation can be, for example, a transformation of one
technology into another such as transforming Java byte code into .NET byte code
(Frijters, 2008) or a UML diagram into Java source code. Thus the original UOM can
be used in another (technology) domain. The service-based software construction
process focuses on the transformation of implementation data. Moreover, it can be
necessary to transform describing information. The service-based software
construction process defines “Transformation” like the definitions of Mode Driven
development (MDD/MDSD) (Meimberg et al. 2006), (Stahl, 2007) and Generative
Programming (GP) (Czarneck and Eisenecker, 2000). Transformation means in this
area that information will be transformed into the same or another domain specific
model for later reuse. (Garcia-Magarino, 2008) shows different modelling languages
and frameworks in the area of CASE-tool interoperability. (Czarnecki and Helsen,
2003) show a classification of different model transformation attempts. Within the
scope of this research MDD and GP are focused. In this publication transformation is
done by using existing transformation tools.

Another important term is “Software Construction Artefact (SCA)”. An SCA is a
container for UOMs which corresponds to the same problem area. For example: An
Artefact for calculating the mathematical GAUSS function carries 3 UOMs. The first
is a Java Class, the second a .NET component and the last one a Web service. This
example shows that the common scope is important to put UOMs into the same
artefact and not the technical view on the UOMs.

2.2 Service-based software construction procedure model

The service-based software construction process is the underpinning methodology
for the software described by this paper. It contains a maximum of four possible
phases.

1. Development of an outer structure (Precondition phase)
2. Choice of the units of modelling and their transformation rules
3. Creation of missing artefacts / units of the modelling (optionally)
4. Transformation of the units into the external structure

The first phase is to create an outer structure. This means the developer has to create,
for example, a class structure which can be extended by adding UOMs. In the second
phase the user searches for artefacts which correspond to his search criteria. The list
of possibly suitable artefacts is then examined closer to identify certain units of the
modelling which can be used. In addition, the units of modelling contain
transformation data which can be used to customise the unit. If the research proves
that components are missing or no components can be found in the available
repositories, the components must be created independently. This means that step
three is an optional step. When all components are identified, they are transmitted
into the created external structure (see first phase) by means of the transformations
selected in phase two. The creation of the external structure is a step preceding the

Chapter 3: Internet and Applications

137

software construction. The service-based software construction process does not
define the creation of the outer structure but uses it as a precondition. Example: A
developer wants to create a small program which is able to calculate Pi. To do this he
starts to create an empty class structure (outer structure). Afterwards he continues by
searching a UOM for calculating Pi. The result of the search is an SCA which
provides him four UOMs: A webservice, a java component, a C# Class and a
transformation which transforms the C# Class into a VB class. The developer selects
the webservice and adds it to the outer structure. The phases 2, 3 and 4 also represent
the procedure model. Through the consideration of this procedure model the Use
Cases become visible. This, however, only constitutes summarised Use Cases: 1.
Select UOM, 2. Transform artefact and 3. Create UOM.

2.3 Basic information, transformation and integration model

The fundamental information model defines the contents of a software construction
artefact. A software construction artefact contains different implementations of the
three kinds of units of modelling, but all implementations refer to the same problem
area. Each unit contains "legible", "illegible" and "reference" information. Legible
information serves the user during the identification and transformation phase. This
can be documentation information, cost information, specification information and
modelling information. "Illegible" data are information which can be ascribed to the
automated use by the machine. Thereby, component-specific and component-
unspecific information are distinguished. Specific data are implementation (with
objects) and binary data (with components). Unspecific data can occur with more
than one component kind such asinterfaces, UnitTest and transformation data. In
figure 1 the illegible data is described as “NRDataType” and legible data as
“RDataType”.

Figure 1: Information model core

This figure also shows a sketch of the information model core. The important
statement is the relationship between the Artefact and the UOMs. Also the content of
the UOM is important. Beside the basic data model, there is one more transformation
and integration model. The transformation model describes the input and output data

Proceedings of SEIN 2009

138

as well as the transformation rules of a transformation. The input data are a special
subset of data from the information model whose contents depend on the respective
unit of modelling. A transformation rule is the description on how to transform the
input into the output. Since this area has not deepened further in the actual research
yet, an application-supported transformation is anticipated in this case. Therefore, a
transformation needs a set of parameters and the respective start-up files which
launch a transformation. The output results from the used transformation rule or the
used transformation application. This scenario requires an enhancement of the basic
information model. UOMs must contain transformation sets and these sets are
composed of transformation rules. Figure 2 shows the enhancement of the
information model with transformation entities. So a UOM can have transformation
sets, which consist of different transformation rules. Input and the output of these
rules are file based data.

Figure 2: Transformation entities in the information model core

After the transformation of data, these must be integrated into the respective
development environment. Therefore, a model is required which recognises the
destination structures and mounts the input data. Figure 3 sketches the relationship
between the transformation and integration model. The left side shows the
transformation concept which is explained above. The right side illustrates the
integration into an IDE, whereas the output files of the transformation are the input
files of the integration.

Chapter 3: Internet and Applications

139

Figure 3: Simple transformation and integration model

3. A service-based software construction CASE-tool

Upon this information, a transformation and an integration model, which are
sketched in the last paragraph, a set of CASE-tools were built. This section shows the
important points relating to the service-based software construction process.

3.1 System architecture

During the development of the application, the following system architecture was
realised (see figure 4):

Figure 4: System Architecture

Hereby, the server provides the administration of artefacts and their information, for
example, save, delete and search of artefact information. Here, artefact information is
saved in a data base. In addition, the server contains the transformation engine. The
packaging and provision of this engine, the artefact database and the search
functionality through the server as a service belong to the central core of the service-
based software construction and represent one novelty of the service-based software
construction approach. The management client provides a simple graphic user
interface for the server functionality. On one hand, this serves for the management of
artefact information and, on the other hand, as an easy test environment of functions
(during the development phase). This client is available as a stand-alone application
and as an integrated user interface in the development client.The development
environment client serves for the use of the server functions within an IDE as a
CASE application. This client is able to query for artefact information. The
representation of detailed information occurs in an additional web browser as a
window within the IDE or in an external browser. In contrast to the management
client, the development client does not influence the artefacts such as the deletion of
an artefact on the server. The real job beside the search of artefacts and units of

Proceedings of SEIN 2009

140

modelling is the transformation and the integration of transformation results in the
current development project. Three different forms as a communication-form are
possible : Inter process channel (IPC) (Microsoft, 2009), Transmission Control
protocol (TCP) (Microsoft, 2005) and a web service. The IPC serves as a remote
means of communication between processes within local systems, as for example
client and server are executed on the same machine. In contrast, TCP serves for the
communication between client and server and, as a result, the programs can be
located on different systems. At closer inspection it can be recognised that IPC and
TCP constitute the basic communication methods. The web service, shown in figure
4, serves the provision of a uniform interface and uses the basic communication
methods again.

3.2 Interfaces

The system exhibits interfaces in two points: 1. with the use of the remote object for
service-based construction. 2. With the use of the web service for service-based
construction. The first includes features such as create, update and create artefacts or
UOMs. In addition, another remote object for the control of the server is available.
This is not explained closer since it concerns standard methods for the control of an
application (for example restart and stop). Figure 5 shows the interfaces of the
remote objects and the web service.

Figure 5 – Remote object and web service interfaces

The basic methods of the interface DBSystem exhibit self created data structures
(classes) as parameters which are technology specific (in this case .NET technology).
To guarantee the compatibility of the SCA and UOM description with other
technologies, all self made (description)classes were made serialisable in the first
step. An example for this is that the objects of such classes can be transformed into a
form of XML. Since XML is basically a text based form, it can also be converted
into other technologies, for example, by the use of web services. Furthermore,
attention was paid to the fact that all basic types used in this approach are also
serialisable. In the second step, overloaded methods (secondary methods) were
developed which contain only serialisable data. This includes, for example, that
parameters as well as return values are textual information. Furthermore, serialisation
is important to exchange describing data. Figure 6 shows an example of a simplified
serialised SCA description which includes a UOM and meta information.

Chapter 3: Internet and Applications

141

Figure 6: Example of a serialised software construction artefact

3.3 Transformation engine

The transformation engine is part of the repository server and can be used by a web
service call. It transforms input information into another form by executing
transformation rules sets. These rule sets are stored in UOMs. Each rule set consists
of transformation rules. A rule in turn contains a program fetch of a transformation
tool, a set of parameters which correspond to the transformation tool and input files
(see figure 3). These input files can be files of the UOM or output files of a previous
rule in the same rule set. Example: To transform WSDL information into a C# client
and server stub, the SVCUTIL tool of the Windows SDK can be used. SVCUTIL
needs the parameter “language:C#”. So the program fetch is “svcutil.exe test.wsdl
language:C#”. The output of this call is a C# file (test.cs) which includes different
server and client classes and all types are needed. The transformation rule set
contains only one transformation rule. This rule is based on a transformation base
(svcutil.exe) and two corresponding parameters (language:C#) and the input file
(test.wsdl) which is part of the original UOM. The developer now selects this
transformation and the repository server executes it. The result will be transferred to
the user. If the user uses the IDE client, the result will automatically be added to his
project environment.

4. Conclusion and future work

The service-based software construction process is an extension of procedure models
and focuses on reuse. It consists of three parts and contains technical innovations.
The first part is the idea of a common database for software construction artefacts
(SCA) and units of modelling (UOM). This means all necessary information of a
software unit (class, component, service), such as implementation, documentation,
specification and test information, will be stored in a UOM. Thus a UOM includes
all data which was produced during its development. This data can be used by
different roles (like software architect or developer) and in different development
phases (like requirement or development phase) for reuse. An SCA includes all
UOMs which refer to the same problem as a solution. Therefore, the developer can
easily manage and search for technical solutions. This stored data focuses on reuse.
This means that it is a software unit reuse database / content management system. It

Proceedings of SEIN 2009

142

is important for reuse to have a single system to manage entities and their knowledge
which can be reused. Users, like software architects or developers, use different data
to make decisions. If this data is stored at one place, it is easier to find and use it.
The second part includes a transformation engine which can transform UOMs.
Transformation means that a UOM can be converted into another form, as for
example a Java binary code into a .NET binary code. This also implicates that
possible transformation rules will be stored inside the UOM. These rules should be
able to transform the implementation of a UOM implementation into another
technical or domain specific form and give added value for the reuse of the UOM.
Thus the reuse database becomes extended with transformation rules. Together with
this transformation engine and the underlying transformation model the database
changes from a content management system to a software construction system. At
the moment no system is existing which stores all UOM data combined with
transformation data and functionality to generate an added value. Therefore, the
shown system is an innovation. Part three is a service which offers all the database
and transformation functionality to the developer. The innovation of this service is
that the complete functionality of the construction system (managing, searching and
transformation) is capsulated in one single interface. By using a service as a
communication node to such a software construction system, different developers
can use one single repository from different locations. As an added value of this, the
costs for software developing will be reduced. Lower license fees for different
content management systems and transformation tools is only one example for this
reduction of costs.The system shown in this publication shows the important parts of
the service-based software construction process as a technical implementation. It also
shows, that the up to now ascertained models (communication, artefact information
and transformation) can be realised in a CASE-tool. The reason is that the
ascertained Use Cases were realised. That means construction, search, deletion and
fitting of artefacts or units of modelling are basically possible. It was also shown that
transformation and use of transformations on artefact information is possible.

Some details of the important data model are not shown in this publication if the
output of a transformation rule is saved in a stand-alone unit of modelling, such as
the solved consistency problem. But this approach still has open question. One of
these questions is the need for a semantic search. By using all possible information,
as for example documentation and specification with a full text search, the search
results will not be very useful. The system shown in this publication uses full text
search. But the developer needs a system which only offers him applicable results for
his search question. Therefore, semantic search is an important research area for the
service-based software construction process. Another important question is the
research for other methods of transformation. The transformation model shown in
this publication only supports tool-based transformation. It must be analysed whether
there are other transformation methods which must be added to this model.

5. References

Czarneck, K. and Eisenecker, U. (2000), “Generative Programming”, Indianapolis, USA
Addison Wesley. ISBN: 978-0-201-30977-5

Chapter 3: Internet and Applications

143

Czarnecki K. and Helsen S., (2003), “Classification of Model Transformation Approaches”,
OOPSLA’03 Workshop on Generative Techniques in the Context of Model-Driven
Architecture, pp. 32-49, http://www.softmetaware.com/oopsla2003/mda-workshop.html

Daneva, M. and Terzieva, R. (1996), “Assessing the Potentials of CASE-Tools in Software
Process Improvement A Benchmark Study”, Proceedings of the Fourth International
Symposium on Assessment of Software Tools, pp. 104-108. Toronto, Canada

Deneva, M. (1999), “A Best Practice Based Approach to CASE-tool Selection”, Proceedings.
Fourth IEEE International Symposium and Forum on Software Engineering Standards, pp.
100-111,Curitiba, Brazil

Frijters, J. (2008), “IKVM.NET Home Page”, http://www.ikvm.net/, (accessed 02 2009).

Garcia-Magarino, I. and Gomez-Sanz, J.J. (2008), “Model-based Methodologies Framework
for Defining Model Language Metamodels for CASE Tools”, Proceedings of the 2008 5th
International Workshop on Model-based Methodologies for Pervasive and Embedded
Software, pp. 14-23, Budapest, Hungary

Hitzler, P., Krötzsch, M., Rudolph, S. and Sure, Y. ,(2008), “Sematic Web: Grundlagen”,
Springer Verlag, Heidelberg, Germany

IEEE (2007), “IEEE Recommended Practice for CASE Tool Interconnection —
Characterization of Interconections”, Software and Systems Engineering Standards
Committee, http://ieeexplore.ieee.org/, ISBN: 0-7381-5233-1

MConnel, S. (1996), “Who cares about software construction.”, IEEE, Software Vol. 13 Issui
1, 01, pp. 128-129

Meimberg, O., Petrasch, R., Thoms, K. and Fieber, F. (2006), “Model Driven Architecture.”,
Heidelberg: DPunkt, ISBN: 3-89864-343-3

Microsoft (2009), “Interprocess Communications“, http://msdn.microsoft.com/en-
us/library/aa365574(VS.85).aspx (accessed 06 2009).

Microsoft (2005), “.NET Remoting 2.0“, http://msdn.microsoft.com/de-
de/library/bb979586.aspx (accessed 06 2009).

Papazoglou, P., Traverso, P., Dustdar, S. and Leymann, F (2007), “Service-Oriented
Computing: State of the Art and Research , available Challenges”, http://ieeexplore.ieee.org
(accessed 12 2007).

Pfleeger, S. L. and Atlee J. M. (2009), “Software Engineering Theory and Practice”, 4th
Edition, Prentice Hall, USA, ISBN: 978-0-13-606169-4

Stahl, T., Völter, M., Efftinge, S. and Haase, A. (2007), „Modellgetriebene
Softwareentwicklung: Techniken, Engineering, Management“, Dpunkt Verlag, Heidelberg ,
Germany, ISBN: 978-3-8986-4448-8

Stuckenschmidt, H. (2009), „Ontologien“, Springer Verlag, Heidelberg, ISBN:978-3-540-
79330-4

Sommerville, I. (2007), „Software Engineering“, Vol. 8th, Addison-Wesley, Munic, Germany,
ISBN: 978-3-8273-7257-4

Proceedings of SEIN 2009

144

Szyperski, C., Gruntz, D. and Murer, S. (2002), “Component Software Beyond Object-
Oriented Programming”, Vol. 2nd Edition, pp.35-48, Addison-Wesley., New York, USA,
ISBN 0-201-74572-0

W3C (2004), “W3C Web Service Glossary”, http://www.w3.org/TR/ws-gloss/, (accessed 12
2006).

Wang, G. and Fung C. K. (2004), “Architecture Paradigms and their influence and impacts on
component-based software system”, pp. 902 72a, Proceedings of the 37th Annual Hawai
International Conference on System Science, ISBN: 0-7695-2056-1

Zinn, M. (2007), “Service based software construction process.”, Proceedings of the 3rd
collaborative research symposium on Security, E-learning, Internet and Networking (SEIN
’07), pp. 169-184, Network Research Group, University of Plymouth, Plymouth, GB. ISBN:
978-1-8410-2173-7

Zinn, M. (2008), “Definition of software construction artefacts for software construction.”,
Proceedings of the 4th collaborative research symposium on Security, E-learning, Internet
and Networking (SEIN ’08), pp 79-91, Network Research Group, Wrexham, GB, ISBN: 978-
1-8410-2173-6

