Software Development

An Organizational Approach for
Industrialized Systems Integration

Matthias Minich, Bettina Harriehausen-Miihlbauer, and Christoph Wentzel

h_da — University of Applied Sciences Darmstadt, Germany
matthias.minich@web.de
b.harrichausen@fbi.h-da.de
c.wentzel@fbi.h-da.de

Abstract: Software development in systems integration projects is still reliant on
craftsmanship of highly skilled workers. To make such projects more profitable, an
industrialized production, characterized by high efficiency and quality, seems
inevitable. While first milestones of software industrialization have recently been
achieved, it is questionable if these can be applied to the field of systems
integration as well. One of the most important concepts herein is specialization,
represented by Software Product Lines. The present work analyses this concept
against the particularities of systems integration and subsequently develops an
alternative approach suitable for its implementation. The outcome is a
three-layered organizational model that adapts and distributes the processes of
Software Product Line Engineering and Product Development in accordance with
the requirements of systems integration.

1 Introduction

Software Engineering offers several methodologies for industrialized software
development, representing specialization, standardization, systematic reuse, and
automation. The latter three are based on standardization to be most effective, which is
represented by Software Product Lines (SPL). It seems to be very difficult or even
impossible to create reuseable artefacts or automate development in an arbitrary context.
A Software Product Line therefore spans a clearly delimited frame around a family of
software products, sharing a common set of features and artefacts within a particular
segment [CNO7]. By concentrating on a limited scope, reusable production assets can be
much more powerful than in a generic one. Unfortunately this does not apply to all fields
of software engineering.

With reference to systems integration, the multiplicity of different technologies, caused
by high heterogeneity, inflexible legacy systems and different data sources, seems to be
a major drawback to the definition of distinguished product lines. In a product line
covering Supply Chain Management systems, products may be highly integrated with
third party shopfloor or finance systems, for instance. Including support for any
potentially attached system undermines the advantages of a delimited context, while ex-
cluding them will force development to occur outside the industrialized concepts.
Another major drawback is the de-facto development of one-off products per customer.

399

INC 2010

Barely any solution operates in the same environment or is interconnected with the same
type of systems. The initial setup cost for software product lines may therefore be
contraindicative as the return of investment cannot be ensured.

2 Organization of Product Lines

Software Product Lines separate between product and product line development,
represented in the following two scenarious:

A) Quality oriented development of standard software in a complex environment with a
high degree of novelty. Considering the impact of a defect introduced into the underlying
product line, a high level of quality outweighs the objective of lower cost. It is assumed
that developing a new software product line is highly complex [Lin07] and comes with a
high degree of novelty. As of a product line’s fundamental and long lasting nature, a low
dynamic is assumed.

B) Cost oriented development of customized software in an established environment
with low dynamics and low complexity, which applies to product development. As most
motives for software product lines are based on economic considerations [Lin07, CNO7,
PBLO5], cost outweighs quality in this scenario. Furthermore, a certain level of quality is
automatically ensured by utilizing artefacts of the respective product line. As products
are developed within the boundaries of a well-known environment, novelty and
dynamics can be considered as low. Likewise, complexity is reduced due to the reuse of
common parts in a predefined platform and architecture.

Out of these scenarious, the present work developed a generic organizational structure
for software product lines. It is thereby considering several works on organizational
structures from an economic and software development point of view [Gro95, WDOS,
Top8S, Fre98, Lan04].

2.1 Software Product Line Engineering

Software product line engineering consists of several processes to define its scope and
develop the infrastructure and core assets to be utilized in future products. Considering
literature on software product line engineering [PBL05, CNO7, Lin07, Bal08], the
primary processes can be subsumed as follows:

- Business Domain Analysis identifies typical business processes, associated problems
and solutions, and evaluates and prepares this knowledge for further processing. It
also specifies a product’s features within a software product line.

- Domain Requirements Engineering defines a product line‘s scope by identifying
products and documenting their commonalities and variabilities. This scope may
evolve over time [CNO7].

- Architecture Design & Development transforms the scope into a technical
architecture for the product line and its products. The architecture decomposes a

400

Software Development

software system into common and variable functional parts, defines relationships and
interfaces, and establishes rules for their implementation.

- Core Asset Development provides detailed design and implementation of reusable
components based on the reference architecture [PBLOS]. It includes executable
code, variability mechanisms, common processes, development tools, and any other
reusable assets.

- Domain Testing develops test cases and inspects all core assets and their interactions
against the requirements and contexts defined by the product line architecture. This
also includes validation of non-software core assets.

- Software Integration occurs during preintegration of several software components.
They form blocks of functionality common to all products and contexts of a product
line. It also ensures the interoperability of all reusable assets and provides the
required integration mechanisms.

Implementing a delimited software product line is a singular undertaking for an
enterprise. Although the primary processes remain the same throughout the development
of other domains, work objects (architecture or core assets for instance) are unique and
require different production steps for their completion. A decomposition based on work
objects thus seems more appropriate than an activity based breakdown. It results in
divisional units, responsible for all tasks required to create or modify a heterogeneous
and potentially dynamic work object [Gro95]. This decomposition however, is limited
by the interdependencies of the underlying work objects. It must be decided if interacting
objects should be merged and represented in a single organizational unit, or if they can
remain separate in favour of smaller and more efficient units. For software product line
engineering, the present work suggests a structure as depicted in Figure 1. It assumes a
low interdependency of business domain analysis due to its observing and strategic
focus. It is therefore represented in its own organizational unit. Requirements
Engineering and Architecture Design & Development are joined as of their intense
interaction during problem definition and solution development within a new problem
domain [Lan04]. Once requiremens and architecture are defined, core asset development
may occur. It is expected to have only litte interdependencies as their overall structure
and requirements have been defined in the previous two processes. They are
implemented in their own unit and may be parallelized. Integration testing requires a
certain degree of integration to be performed. It is therefore joined with the software
integration process.

401

INC 2010

Organizational Structure for Software Product Line Engineering

Core Asset 1

Detailed Detailed
° e ’ o= Implementation| Test ‘
Z Requirements Software
© Engineering Core Asset 2 Integration
<
< Detailed Detailed "
£ R Deaign Implementation| Test
©
£
a Core Asset 3
13
] EEEILE Detailed |}, jementation| Test
g Architecture (Il peshon .
= . Integration
] Design & Testing
[Development Core Asset 4

Detailed Detailed "

Analysis ’ Design Implementation| Test ‘

g==

Figure 1: Organizational Structure for SPL Engineering

2.2 Product Development

In product development, the applications of the product line are built by reusing the core
assets developed in software product line engineering. Considering literature [PBLOS,
CNO07, Lin07, Bal08], the primary processes of product development can be subsumed as
follows:

- Product Requirements Engineering analyses the variance of product requirements
from the product line’s core assets and decides whether to implement application
specific assets or accept a functional trade-off.

- Product Design derives a particular product architecture from the overall product line
architecture. Abstract variation points are instantiated and product specific
requirements added. It defines how the product will be realised and may be compared
to a detailed technical concept in single system development.

- Product Realisation assembles the application from core assets within the product
architecture, binds their variability points according to requirements and design, and
implements product specific assets. Compared to single system development,
integration efforts are decreased due to predefined architectures and integration
mechanisms [CNO7].

- Product Testing ensures sufficient quality of the end product. Although the
components have been tested during product line development, instantiated
variability points and interaction with other components must also be covered.
Furthermore, during domain testing it is impossible to cover all potential
combinations of core assets.

402

Software Development

Product development within an SPL is a recurring activity. The objects of work (i.e.
products) are homogeneous and stable. It can be assumed that similar products have been
developed before and that product architecture and technology are well understood.
Interdependencies between the primary processes are therefore expected to be low.
Compared to scenario A, product development is characterised by low dynamics and low
complexity. Consequently, an activity-based decomposition of work seems most
appropriate, which will result in divisional units [Gro95]. The degree of decomposition
is determined by a preferably small team size [Bal08], and the required interaction
between the resulting functional units. For product development, the present work
suggests a structure as depicted in the following.

Organizational Structure for Product Development

Product A —_— > H Ll | .
< & 1010
E | 2
[o &
£ 5 5 = g

Product B —_—) H 2 L g] | L
i 3 g =] 100
o =} E | = g
@ -) = 15
2 5 g €
c 35 e a
2 5 ° 1 b

Product C e £ H 3 L = g 1 = C
£ o E | g g 100
£ o]
: £

e S I i

Figure 2: Organizational Structure for Product Development

The above structure assumes a low interdependency between the five primary processes
of product development, except for implementation and component testing. This is due
to the fact that the product line requires development to occur within clear bundaries
with precisely defined interfaces between core assets and architectures. It however does
not predefine requirements for component testing, which is therefore joined with the
implementation process due to presumably interative interactions between both.

3 A Three Layered Structure for SPL in Systems Integration

As described before, it seems disputable whether the concept of software product lines in
its original form can be applied to the field of systems integration (SI). Revisiting
chapter 1, the major issues can be subsumed as follows:

- Integration across software product line boundaries: SPLs have a preferably narrow
scope to be most powerful. SI however requires considering a variety of different
products with a very different scope. If the product lines of a system integrator are

403

INC 2010

not compatible with each other, integration will inevitably occur outside their
boundaries.

- Multiplicity of technologies: The multiplicity of different technologies in SI, caused
by high heterogeneity, inflexible legacy systems, and different data sources, seems to
be a major drawback to distinct product lines. Too much scope, which will most
likely be used only once, would have to be added.

- Uncertain return of investment: As systems integration produces very customer
specific solutions, the minimum number of products to break even cannot be ensured.
The cost for a substantial software product line may outweigh its savings.

It is assumed that an integration of different IT systems mostly occurs within the
boundaries of a particular industry. An automotive supplier for instance will hardly need
to integrate any of his systems with an e-government solution from the public sector. Yet
he may require integrating his SAP accounting system with a logistics application of one
of his suppliers. This assumption is backed by current organizational structures of major
systems integration companies, which are organized in a vertical structure based on
certain industries [Pie09]. Any integration architecture should therefore at least support
the typical systems of the respective industry. Implementing such an architecture within
an software product line however, would broaden its scope far beyond being efficient
and thus feasible for industrialization. This especially applies to reusable core assets,
which would be too generic to provide any benefit.

To overcome these problems, a three layered approach for software product lines in
systems integration has been developed. It essentially adds a layer of abstraction on top
of the software product lines. The contents of each are suggested as follows:

- The Business Domain Layer is a new super ordinate layer that spans over a complete
division or business segment within a system integrator’s organizational structure. It
identifies the major requirements of the business domain in scope and conceptually
defines fundamental core assets, technologies, and systems typically used therein.
The development of an abstract system landscape and integration architecture
ensures the interoperability of different systems and product lines within the business
domain. It consists of the four core processes Business Domain Analysis, Portfolio
Definition, Architecture & Roadmap Definition, and Core Asset Development.

- The Product Line Layer consists of several software product lines identified in the
Portfolio Definition process of the Business Domain Layer. The Engineering
processes of these software product lines differ only marginally. The most obvious
variance to conventional software product line engineering is the lack of the Business
Domain Analysis process, and a reduced Domain Requirements Engineering process.
These functions are now incorporated in the Business Domain Layer and provide
their findings to the subsequent product lines. All other processes remain the same
but must adhere to the specifications and utilize the provided core assets from the
business domain layer.

- The Production Layer contains the actual development of a product within a software
product line. It does not differ from the conventional concept of software product
lines depicted in section section 2.2. This of course only applies to the software

404

Software Development

development process. Any systems integration specific architecture or solution
design was already taken care of in the previous two layers.

Organizational Structure for Industrialized Systems Integration

Riuicinace NDAmain O

Riicinace NAamain R

Business Domain A
‘: Business Domain Analysis Architecture Development Core Asset
g & Portfolio Definition & Roadmap Definition Development
3
Product Line 1 Product Line 2 Product Line 3 Product Line n

~ ECE———— | | | SE———
o i R = i
2 10 = Tl
-]]

= & =
© =] =0}
- el =9
3 el el
® = =
- =i i

Figure 3: Three Layered Approach for Industrialized SI

The work objects of the above processes can be combined into a product line skeleton,
which will be instantiated by a particular software product line. This rather abstract layer
for industrialized software development is expected to have a positive effect on the
previously mentioned major issues of industrialized systems integration. The first
concern, integrating products from different product lines, may be solved by the
Portfolio Definition and Architecture & Roadmap Definition processes. The abstract
architecture applicable to all software product lines ensures the compatibility of products
within a given business domain. Integrating the products from a supply chain
management product line with those from a shopfloor systems product line, for instance,
will be much easier due to compatible architectures and technologies. The second one,
multiplicity of technologies, can be alleviated by a joint technology roadmap. It will limit
the number of utilized technologies within the software product lines and thus reduce
their heterogeneity. While differences due to legacy systems or third party applications
will prevail, these may be alleviated by joint interface components across multiple
product lines. Within the product line boundaries, heterogeneity is thereby reduced to
standardized interfaces, while externally a wide variety of products may be supported.
Furthermore, if products from such product lines are integrated with each other, these
issues will resolve over time. The third concern, ensuring the return of investment, can
also be attenuated. Software product line engineering may instantiate the predefined
skeleton and has a greatly reduced effort in the processes Business Domain Analysis,
Business Domain Architecture, Architecture Design & Development, and Core Asset
Development. Due to reduced efforts and thus cost, the break even point of a SPL may

405

INC 2010

be reached earlier. Although this approach may not be as efficient as traditional software
product lines, the author assumes that it still helps to advance their break even point in SI
and that it will have a positive effect on the overall product quality. Case studies and real
world implementations in traditional software development have shown a break even
after 2-3 products of a product line [CNO7]. This value of course depends on the
effeciency and reusability of the underlying core assets. However, if these characteristica
can also be achieved for the core assets of a systems integration product line still has to
be proven in practice.

As implementing the business domain layer is a singular and novel undertaking, work is
decomposed based on work objects. Thereby the processes Business Domain Analysis
and Portfolio Definition are combined due to a presumably close interaction.
Architecture Development and Roadmap Definition, as well as Core Asset Development
remain separate as they only rely on their predecessor’s outcomes but do not
significantly influence them. Based on the nature of the core assets to be developed, it is
also conceivable to break it down into different teams. These teams may then be
responsible for particular assets throughout their lifetime and also take over their
maintenance.

The resulting structure of the three layered approach is depicted in Figure 3. It should be
noted that the Product Line layer does no longer contain the Business Domain Analysis
Process form Software Product Line Engineering and also reduces the responsibilities of
the Domain Requirements Engineering Process. These functions are now incorporated in
the Business Domain Layer and provide their findings to the subsequent product lines.
All other processes remain the same but must adhere to the specifications and utilize the
provided core assets from the business domain layer. The internalization and thus
organizational structure of the remaining product line engineering processes remains the
same.

4 Further Research

The present work introduced into the fundamentals of software industrialization and
systems integration, and showed that both cannot be combined easily. The reasons
therefore are integration issues across product line boundaries, a high heterogeneity, and
an unsure return on invest. In spite of these issues, the paper developed an alternative
approach to implement software product lines as one of the industrial key concepts in the
field of systems integration. As the preset work has a rather conceptual character, further
research is required to move it closer to industrial practice. This especially includes
developing a more detailed process and role model to give practitioners a starting point
for realisation. Furthermore, the exemplary implementation of a Business Domain Layer
as a proof of concept, especially with regard to abstract, reusable assets, would be
helpful to promote industrialization in systems integration.

Besides implementing software product lines as the industrial key principle of

specialization, standardization, systematic reuse, and automation represent the next key
milestones on the way towards fully industrialized systems integration. Further research

406

Software Development

is required to identify their current representation in software engineering and eventually
apply them to the field of systems integration.

References

[Bal08] Balzert, H.: Lehrbuch der Softwaretechnik. Softwaremanagement. Spektrum Akad.
Verl., Heidelberg, 2008.

[CNO7] Clements, P.; Northrop, L.: Software product lines. Practices and patterns.
Addison-Wesley, Boston, 2007.

[Fre98] Frese, E.: Grundlagen der Organisation. Konzept, Prinzipien, Strukturen. Gabler,
Wiesbaden, 1998.

[Gro95] Grochla, E.: Grundlagen der organisatorischen Gestaltung. Schiffer-Poeschel,
Stuttgart, 1995.

[Lan04] Lang, C.: Organisation der Software-Entwicklung. Probleme Konzepte Lsungen. Dt.
Univ.-Verl., Wiesbaden, 2004.

[Lin07] Linden, F.: Software product lines in action. The best industrial practice in product line
engineering. Springer, Berlin, Heidelberg, New York, 2007.

[PBLOS] Pohl, K.; Bockle, G.; Linden, F.: Software product line engineering. Foundations,
principles, and techniques ; with 10 tables. Springer, Berlin, 2005.

[Pie09] Pierre Audoin Consultants: Software and IT Services Industry (SITSI) Report, Paris,
2009.

[Top85] Topfer, A.: Umwelt- und Benutzerfreundlichkeit von Produkten als strategische
Unternehmensziele. In Marketing ZFP, 1985, 7; pp. 241-251.

[WD08] Wohe, G.; Doring, U.: Einfithrung in die allgemeine Betriebswirtschaftslehre. Vahlen,

Miinchen, 2008.

407

