
University of Plymouth, UK, 24-28 November, 2010

53

System Design for Embedded Automotive Systems

S.Vergata1,2, J.Wietzke1, A.Schütte1 and P.S.Dowland2

1Faculty of Computer Science, University of Applied Sciences Darmstadt, Germany

2Centre for Security, Communications and Network Research,
University of Plymouth, United Kingdom

{s.vergata, j.wietzke, a.schuette}@fbi.h-da.de, p.dowland@plymouth.ac.uk

Abstract

These days, a modern car will be a complete office, lounge and chauffeur system, composed
from different systems, that incorporate themselves into an on board automotive cluster
system. This will behave like one component and offer a customized user interface. To
facilitate the system development of such a cluster system, different system interfaces like
memory and inter process communication mechanisms need to be provided through all the
cooperating systems. Embedded systems are now facing the same problems, which occurred
years ago in the server world. One of the major automotive original equipment manufacturers
chose Intel’s Atom CPU as the target platform for their latest development. This step shows
that a modern x86 based architecture could provide the basis for a reliable automotive system.
There is now an opportunity to introduce virtual machine (VM) technology combined with
new security and reliability methods in the embedded automotive sector.

Keywords

Embedded systems, Hypervisor architecture, Automotive systems, Scheduler,
Security compartments

1. Introduction

In the automotive business, the software development is domain oriented. Telephone,
speech recognition and speech output, for example, were running on their own
processor in the last generation. Only because of cost reasons and higher HW-
integration, many domains nowadays get combined on the same processor. We count
between 8 and 16 domains, some of them supplied by third party vendors, often
directly contracted by the OEM.

It is no surprise, that they follow their own priority scheme and scheduling according
to their own history. At the same time ideas like domain based binary delivery, get
promoted which represent a domain each, contributors are requested to deliver their
code as a binary, ready to run, with APIs specified and followed, but without priority
and scheduling coordinated.

Caused by the chosen Round Robin scheduling in the OS for the moment, this
approach forces all provided binaries to use one common priority (10), which is not a
valid concept for a product, causing a high complexity in integrating all components

Proceedings of SEIN 2010

54

together in one single system. A new type of system architecture has to be introduced
which separates system critical and resource hungry applications case by case.

A recent found automotive alliance named GENIVI selected the OpenSource project
MeeGo (Hoffmann 2010) for their base system opening up the automotive sector for
freely developed application, with all different types of system usage and
requirements. The kernel 2.6.33 used in MeeGo uses a Completely Fair Scheduler
(CFS) designed for an interactive desktop system. This scheduler evenly distributes
available calculation time to all available threads (Jones 2009).

2. Problem Statement

One of the major operating systems for embedded automotive systems QNX, (Turley
2005), developed a new scheduler called Advanced Partition Scheduler (APS) to face
the problem of partitioning CPU and resources in a complex software system for
multiple application providers.

The current APS (Danko 2007) is tailored to a use-case perspective, in which high
priority threads are collected into one partition, less important threads into another
partition and so forth.

2.1. Budgeting

In this approach, budget inheritance is mandatory through use cases, which is not
followed in all aspects.

There is an upcoming need for domain virtualization, in which each domain has its
own sandbox with independent priorities and schemes. On this level, there is no need
for a full virtualisation with different operating systems in different partitions. There
is also no need for budgeting.

2.2. Concurrency of priorities

APS doesn’t allow independent, non-coordinated priorities and scheduling schemes
in different partitions. A somehow special and at the same time typical example of
the concurrency of priorities and budgets in APS can be observed in the telephone
environment.

Handsfree telephony collects audio samples and processes them one sample at a
time. This processing includes echo compensation and has to run on maximum load
(100% CPU usage) and on high priority, since crackling, robot voices and mutes
should be avoided.

The typical average CPU usage behaviour for this is 50 %. So a characteristic CPU
load looks like:

University of Plymouth, UK, 24-28 November, 2010

55

Figure 1 Typical CPU usage

In the same domain a so-called background thread is running which is allowed to use
all remaining CPU power on a very low priority. If a mobile is connected the first
time, all the SIM-card data will be downloaded to the automotive system. In our
case, this thread fills up the idle gaps of this partition with its 50% load. So the
averaged load in a given time slice will be at 75 %. The available APS Budget will
be empty just before the high priority thread restart working. In a time window of
100 ms, perfect hands free will be achieved for 75 ms, the remaining 25 ms, the
audio buffers will be empty, causing signal crackling or mutes.

2.3. Scheduling in critical mode

In this domain concepts, budgeting and priorities don’t cope with each other. We will
always face the combination of high and low priority threads in the same
partition/domain, sometimes active, sometimes sleeping. Overspending budgets, like
proposed and implemented in APS by declaring critical budgets is not a solution,
since a thread in critical mode does not follow Round Robin anymore (Danko 2007).

3. Steps to a system design

The above described Problems show the need for a new type of system design in the
embedded automotive sector. In the following sections two possible designs will be
proposed.

3.1. Reduced clock scheduling

One solution could be a scheduling scheme, which distributes the CPU power in a
fixed and fine granular scheme, so that it looks like we have e.g. 8 parallel
processors, each hosting a partition. By that, they do not run on budgets but on
reduced CPU clocks, each according to a given static configuration, predefined
during system configuration time.

If a partition has threads neither running nor ready waiting, it can allow the scheduler
to skip to the next partition. But this is the only dynamic aspect allowed.

A simple non-invasive implementation to gain experience could be the following: A
‘Super’-thread on a high priority level next to kernel priority keeps a list of threads
per partition. After booting, it starts to increase all threads of the first domain by a
fixed value, so that they come first. For that the overall handled priority queues
should be expanded by 64 up to 128, so that the addend will be 64 for raising up a
domain to the according run level. The available add-on priority levels higher then
64 shouldn't be set by user threads but only by the ‘Super’-thread.

Proceedings of SEIN 2010

56

Then the ‘Super’-thread blocks on a timer with a sleeping time according to our
granularity value (e.g. 1 ms). After waking up again, it sets the priorities of the first
partition back to their normal value and increases all threads of the next partition.

The scheme specifying which domain follows which, is stored in a look up table. To
ensure the configured timings for each domain, it is necessary to use a distributed
pre-calculation based on the configured percentage each domain needs. Such a pre-
calculation could be done by using a calculation scheme called Sainte-Laguë
(Mueller 2003). This type of calculation is used for “seat distribution” in a
government parliament.

A small example:

Let us assume a system specified by the following facts:

• 20 % CPU time reserved for base system

• 80% CPU time available slot time for distribution by Pre-Calc

Domain D1 D2 D3 D4 D5

Percentage 35% 30% 20% 10% 5%

Slots 28 24 16 8 4

Table 1: Slot distribution per Domain

Table 1 shows that the overall available CPU slot time is distributed by the given
percentage (division by 5 domains). D1 is the Domain with the highest configured
percentage and with the highest calculated CPU-time-slots (28).

The smallest percentage step allowed should be 5%, so with a granularity of 5 each
domain can allocate CPU time at configuration time. Smaller steps are possible but
not reliable enough. The maximum number of domains should be 20, so it will be
possible to distribute in a fair way and the overall system overhead for every
scheduling step is small.

The scheduling algorithm could be similar to a Fair Share (Ferrer 2010) scheduling
used in an OpenSource implementation called OpenVZ. This implementation also
provides memory isolation, which could be useful for an implementation that can
separate single domains and prevent them from interacting illegally with other
domains.

By having separated domains with assured timeslots, everyone can run
independently and use their assured maximum CPU time without interfering with
other domain runtimes. On the overall system performance monitor a total system
usage of Tu = (100 – Ts) * Td should be seen.

University of Plymouth, UK, 24-28 November, 2010

57

3.2. Virtualization

Virtualization began in the 1960s with IBM CP-40/67 and Cambridge Monitor
System (CMS) (Parmelee 1972) as first type of hypervisor. The Patent granted to
VMWare Inc. US006397242 (Devine 1998) opened up the x86 architecture for
server virtualization. Virtualization on modern server systems does not only provide
the possibility to use 100% computing power but also creates small containments
easier to develop, maintain and rollout. To use the benefits achieved in x86- server
virtualization an important step had to be taken, the switch over to x86 CPU.

One of the major automotive original equipment manufacturers chose Intel’s Atom
CPU as the target platform for their latest development (Otellini 2009). This step
shows that a modern x86 based architecture could provide the basis for a reliable
automotive system and in a second step opens up all the possibilities known from the
server market to the automotive sector.

Figure 2: Virtualization Layer (VMware 2007)

As shown in Figure 2 the virtualization technique introduces an abstraction layer
between the available hardware and the virtualized operating system. The CPU
instructions get binary translated, replaced with hypercalls or mapped by the
Virtualization Machine Monitor to a physical CPU. The chosen type of virtualization
technique is dependent on the hardware. The figure below shows the different levels
and the way a command travels through the layers.

Proceedings of SEIN 2010

58

Figure 3: Different Types of Virtualization (VMware 2007)

Some work has been done taking virtualisation to the embedded market
(VirtualLogix 2006). In the market existing virtualisation solutions separate into two
virtualization types:

• System / Full virtualization

• Software / Container virtualization

In a full virtualization each running client has its own operating system and all the
needed libraries. This creates a well-known system for the client and provides
freedom for the developer. On the other hand it requires more CPU and memory,
caused by multiple running OS-Kernels, an overhead on the system stack, and the
separation of hardware resources.

To provide the possibility to run under the primary system kernel and by that to
reduce the system overhead, a software virtualisation is needed. This has to provide
secured execution compartments, memory abstraction and runtime control.
Applications and used libraries run in this container and will be provided by the
application programmer.

Both types of virtualizations have the possibility to provide a central debug instance
to monitor and intercept applications, trace system calls or analyse memory
allocation without modification in the running applications. With that centralized
monitor, the integrator for the primary system has all methods available needs to
check and control the single clients from outside without interfering into the
provided system.

First evaluations and tests showed that not only a single virtualisation method is
needed, moreover a multilevel virtualisation should be considered

The different types of virtualisation should be combined in one overall virtualisation
solution to support all software components that may be required in a future system.
The system virtualization requires hardware capable of providing the hardware-based
virtualization extension. More and more CPUs introduced into the embedded market
like the ARM Cortex A9 MPCore, Hitachi SH7789 or Intel Atom Z5xx are equipped
with multiple independent core or virtualization extensions like Intels VT-x or
AMD-V, providing the capabilities of a good performing virtualization technologies.

University of Plymouth, UK, 24-28 November, 2010

59

4. Conclusion and Outlook

Caused by the increasing amount of applications wanted in the automotive
environment many problems will have to be faced in the future. Each application
could have a varying way of development strategy, including scheduling, memory
usage and much more. In this paper some insufficiencies could be identified, caused
by integrating different complex software system together in one automotive system.
Our proposals combine applications of different types in a non-interfering way
together into one embedded system.

In the next steps of research, both proposals will be integrated into an overall system
to provide full virtualization, software virtualization and reduced clock scheduling in
secured compartments. With these three different types of systems containment it
should be possible to integrate a variety of applications in one embedded system
without interfering with each other. A complete system image could be loaded in a
full virtualization environment. Reduced software systems without Kernel could be
run in a container virtualization and hardware drivers or base applications could be
run in a reduced clock scheduling.

The approach described in this paper separates all systems and assures the non-
interfering between the systems. The design and realisation of a good performing
communication method for the inter-system communications has to be considered in
a next research milestone. In future research a new system design for embedded
automotive systems will be developed considering security, efficiency and
communication of different interacting software components.

5. References

Broy, M. (2006), “Challenges in automotive software engineering”, In: Proceedings of the
28th International Conference on Software Engineering, p. 33–42, ACM.

Chaudhary V., Cha M., Walters J., Guercio S., and Gallo S.. (2008) “A comparison of
virtualization technologies for hpc”. In Advanced Information Networking and Applications,.
AINA 2008. 22nd International Conference on, pages 861 –868

Danko A. (2007), “Adaptive Partitioning - Scheduler”, http://community.qnx.com/sf/wiki/
do/viewPage/projects.core_os/wiki/Adaptive_Partitioning_Scheduler (last accessed 06-Apr-
2010)

Devine S., Bugnion E., and Rosenblum M. (1998), “Virtualization system including a virtual
machine monitor for a computer with a segmented architecture”. US Patent #6,397,242.

Elkaduwe D. and Derrin P. and Elphinstone K. (2008), “Kernel Design for Isolation and
Assurance of Physical Memory”, In: 1st Workshop on Isolation and Integration in Embedded
Systems p. 35-40, ACM.

Ferrer R. (2010) “Fair-share scheduling”, http://wiki.openvz.org/Fair-share_scheduling (last
accessed 10-Aug-2010)

Proceedings of SEIN 2010

60

Hoffmann J. (2010), “What does GENIVI’s selection of MeeGo mean?”,
http://meego.com/community/blogs/jahoffmann/2010/what-does-genivi’s-selection-meego-
mean, (last accessed 16-Aug-2010)

Jones M. T. (2009), “Inside the linux 2.6 completely fair scheduler”, http://www.ibm.com/
developerworks/linux/library/l-completely-fair-scheduler/, (last accessed 20-Dec-2010).

Matthews J. N., Hu W., Hapuarachchi M., Deshane T., Dimatos D., Hamilton G., McCabe M.,
and Owens J.. “Quantifying the performance isolation properties of virtualization systems” In
ExpCS ’07: Proceedings of the 2007 workshop on Experimental computer science, page 6,
New York, NY, USA, 2007. ACM.

Mueller D. C. (2003), “Public Choice III”, Cambridge University Press, pages 267-274

OpenICM (2010), Webpage of the OpenICM Framework, h-da - University of Applied
Sciences Darmstadt, Germany, http://openicm.fbi.h-da.de (last accessed 20-Aug-2010).

Otellini P. (2009), “Intel Developer Forum San Francisco Opening Keynote”,
http://download.intel.com/pressroom/kits/events/idffall_2009/pdfs/Otellini_IDF_transcript.pdf
, (last accessed 01-Aug-2010)

Parmelee R. P., Peterson T. I., Tillman C. C., and Hatfield. D. J. “Virtual storage and virtual
machine concepts”. IBM Systems Journal, 11(2):99 –130, 1972.

Pretschner, A., Broy, M., Kruger, IH. and Thomas S. (2007), “Software engineering for
automotive systems: A roadmap”, In: International Conference on Software Engineering 2007,
p. 55-71, IEEE.

Seelam S. R., Teller P.J. (2007), “Virtual I/O scheduler: a scheduler of schedulers for
performance virtualization”, In: Proceedings of the 3rd international conference on Virtual
execution environments, p. 105-115, ACM

Sangiovanni-Vincentelli, A. and Di Natale, M. (2007), “Embedded System Design for
Automotive Applications”, In: Computer, volume 40, issue 10, p. 42–51, IEEE.

Turley J.(2005), “Embedded systems survey: Operating systems up for grabs”,
http://www.eetimes.com/discussion/other/4025539/Embedded-systems-survey-Operating-
systems-up-for-grabs (last accessed 18-Aug-2010)

VirtualLogix (2006), “Meeting the Challenges of Connected Device Design Through Real-
Time Virtualization”, http://www.virtuallogix.com

VMware (2007), “Understanding Full Virtualization, Paravirtualization, and Hardware
Assist”, http://www.vmware.com/resources/techresources/1008 (last accessed 10-Aug-2010)

Wietzke, J. and Tran, MT. (2005), “Automotive Embedded Systeme”, Xpert.press, Springer.

