
An Integrated Management Architecture for
Heterogeneous Networks: INSMware

Martin Knahl ✧ , Prof. Dr. Udo Bleimann *, Dr. Holger D. Hofmann†,
Dr. Steven Furnell ✧

e-mail: knahl@vas.fh-darmstadt.de

✧ Network Research Group, Department of Communication and Electronic Engineering, University of Plymouth, Plymouth, United
Kingdom

* Department of Computer Science, University of Applied Sciences Darmstadt, Darmstadt, Germany
† Department of Mathematics and Computing, Cork Institute of Technology, Cork, Ireland

Keywords: Network Management, System
Management, Componentware, SNMP.

Abstract: The Component-based approach to
develop distributed software represents a new
paradigm in software engineering. This approach
is used to implement a new framework for
Integrated Network and System Management for
heterogeneous networks. Future Management
Systems will be derived from a set of pre-
fabricated components rather than being
developed from scratch. In this paper, we present
research in the area of Componentware based
Integrated Network and System Management and
the research prototype INSMware, which was built
using only component-based techniques and which
represents a research prototype that was used for
investigating such component-based network
management techniques. We describe an approach
that integrates the software component paradigm
with network and systems management. Its
integration upon different networking technologies
is outlined. We focus on the monitoring of SNMP-
capable network elements.

1 Introduction
Limitations and restrictions of existing

Network and System Management frameworks,

such as distribution of the management services,
adoption and integration of new services can be
overcome by providing a component based
approach [1], [4]. The impact and leverage of
distributed systems technology is prevailing not
only for design and implementation of user
applications and services but indeed also for the
benefit from deploying management systems. Thus
far, management systems have typically been of
two categories. Either specialised along one
dimension (e.g. vertically, targeting one or a few
management aspects such as billing or
performance, or horizontally, dedicated to
management of a specific layer such as network
elements) or have they resembled monolithic
"main frames" based to a large extent on
proprietary solutions.

Existing management solutions, based on the
integrated manager or platform approach, do not
meet the requirements and are complex. The
development and provisioning of integrated
management services proved to be too complex. A
simpler solution is required and proposed:
Management is LegoTM, Management is distributed
components - thinner layers, higher reuse potential
of existing solutions, improved potential of easy
integration of new technologies and therefore less
effort to integrate existing and new technologies.
Componentware is an enabling technology to meet

the requirements and architectural principles of the
proposed framework and of the prototype
implementation (INSMware). The research uses
contemporary distributed technology to leverage a
modular approach to design management systems,
thus facilitating openness and extensibility on one
hand and adaptability, i.e. customisation of
management services, on the other.

Distributed object-oriented systems [14]
represent the logical development of the object
model supporting the distribution of objects to
physically distinct locations. Distributed object-
oriented architectures, also referred to as
middleware architectures, such as OMG CORBA
or Microsoft DCOM form the basis for the
development of distributed object-oriented
systems. Providing a mediation layer for
distributed object communication can be enhanced
by the provision of a framework to support reuse.
Software components are distributed objects that
are designed to be reused. They represent
physically immutable pieces of software that can
be assembled with other components to form new,
more complex components or even entire
applications. The latter is called componentware.

The development and operation of component-
based systems requires an architectural basis in the
form of a componentware architecture. The main
mechanisms that have to be realised by such an
architecture are those for component search and
description, for component management, for
component composition, and for component
configuration.

The use of software components on an
enterprise level enables the use of distribution,
software reuse, security services and other
functionality. Distribution allows software
components to communicate with each other over
electronic networks (such as local area networks or
the Internet). Modelling aspects and the
functionality of a distributed, component-based
Integrated Network and System Management
framework will be discussed to prove the relevance
to build a novel management framework using
software components, namely INSMware.

The presented approach, leading to the
componentware based Management Framework
INSMware for Integrated Network and System
Management, also enables the monitoring of
component-based applications. It is a building
block of an enormous effort in research and
industry towards the integrated management of all
resources in a distributed system. The often-cited
ITU-T Management Framework that categorises

the management tasks into the five classes Fault,
Configuration, Accounting, Performance and
Security Management, only gives a functional
decomposition of this multi-dimensional problem.
However, another important problem dimension is
the resources or components within a distributed
system upon which the management functions are
applied. In the past, mostly the logical
communication resources (e.g. communication
protocol entities) and the physical network
components (e.g. repeaters, bridges, routers) have
been addressed by the standardisation bodies and
industrial products. Consequently, the term
network management is commonly used to cover
these aspects. In the meantime, hardware and
software resources of the end-systems (e.g. disk
space, CPU time of applications) are included in
the management view expanding the network
management to systems management.

Beside the integration of established
management procedures, the proposed framework
requires functionality to be instrumented in order
to enable the monitoring of distributed applications
- one step in the direction of application
management. However, purely isolated
component-oriented management is not what the
end-user expects. Integration of management
solutions with the aim of one single architecture
that may cope with all type of resources is
demanded. For instance, by means of commercially
available network management systems, network
operators get a management view upon the
network resources and thus helps to answer
questions about the reachability and availability
status of network devices and end systems or the
load on the network segments. Additional
knowledge is necessary in order to close the gap
between the applications and the network;
knowledge like, which application components are
running on which end systems, what is the
communication behaviour of the applications or
how much load is produced by the individual
applications.

To gain this knowledge is currently very
tedious, as the mapping relations between
applications and network resources is often
changing, possibly without the knowledge of the
network operator. The situation will become even
worse when object migration technologies or
automatic fault recovery procedures are widely
used. What is required is a common and integrated
view upon all resources of a distributed system on
the network, (operating) system, middleware and
application levels.

This paper presents research leading to a
componentware-based framework for Integrated
Network and System Management (INSMware).
The transferability of INSMware to other
management domains is realised because of a
consistent component-based development approach
to meet the requirements for integrated
management services. There are two versions of
INSMware: one using the CORBA [2] component
model and a DCOM [3] implementation. This
allowed us to study both middleware architectures
in detail.

2 The INSMware Project
This section presents the INSMware project.

The requirements for integrated management
services for heterogeneous networks are identified
and outlined. Then, the architecture of the
INSMware framework is presented, followed by a
discussion of the application domains and sub
projects.

2.1 Integrated Management Services
The disciplines of Network and System

Management encompass all actions taken to enable
and guarantee the maintenance and operations of
the resources - either hardware or software - in a
network (see Figure 1).

In te g ra te d N e tw o rk a n d
S ys te m M a n a g e m e n tA c c o u n tin g

a n d
B ill in g

P ro b le m
M a n a g e m e n t
(H e lp D e s k)

O p e ra tio n s
M a n a g e m e n t
(M o n ito r in g,
J o b S c h e d.)

N e tw o rk
M a n a g e m e n t

C h a n g e
M a n a g e m e n t
a n d S o ftw a re -

d is tr ib itio n

C o n fig u ra tio n
M a n a g e m e n t

S y s te m
M a n a g e m e n t

P e r fo rm a n c e
M a n a g e m e n t

S e c u r ity
M a n a g e m e n t

a n d U s e r
A d m in i-
s tra tio n

Figure 1: Management Disciplines

Integrated Network and System Management
includes the communication network as well as the
server and the end-systems in a network. The
Telecommunications standardisation sector of the
ITU (ITU-T) defined five management categories -
Fault, Configuration, Performance, Accounting
and Billing, Security Management - that define the
different disciplines and requirements for the
management of heterogeneous networking
environments.

Required management services include
configuration of network elements, monitoring and
controlling of network elements, software
distribution (e.g. software distribution to PCs),
user management, security management (e.g.
access control), service management (e.g. video)
and so on. The complexity of the management
services is related to the complexity of the
environment to be managed.

The research has shown that management
standards, such as SNMP or today’s Management-
Platforms like Tivoli TME 10 or HP OpenView
Network Node Manager, basically cannot handle
the end-to-end management of ATM networks [4].
The challenge for the network operators is how to
migrate from these restricted systems to an
architecture that integrates the different network
technologies, i.e. the TCP/IP and the ATM
management model, and that will enable them to
meet the goal of providing seamless, end-to-end
connectivity and management for tens of thousands
of users across LANs and WANs. It has been
found that this seamless architecture presents
problems and raises challenges in just about every
area of network management [7].

Networks
Systems
Applications

INSM Management

Engine

Management
Services
Domain

Framework
Interfaces

ManagementManagement
SystemSystem

EnterpriseEnterprise
AplicationAplication

WorkflowWorkflow

Management
Actor
Domain Service Service

Provider BProvider B
Service Service

Provider AProvider A
Service Service

Provider CProvider C

N
etw

ork A
bstraction

Service Abstraction

FCAPSFCAPS

QoSQoS

MultimediaMultimedia

Figure 2: Integrated Management Framework

The aims of INSMware are to hide the
complexity of the heterogeneous network
environment and underlying technologies and to
provide a universal framework for the various
management services as illustrated in Figure 2. In
addition, INSMware is designed to facilitate the
easier addition and integration of new networking
technologies and management services by
employing component-reuse.

2.2 INSMware Architecture
Distributed systems allow the partitioning of

applications into logical and physical self-
contained entities: distributed objects. These
distributed objects represent a part of the system-
global object model. The possibility to use
distributed objects for the realisation of different
applications makes them into so-called software
components. A software component is a piece of
software with one or more well-defined interfaces
that is configurable, integrable, and immutable. By
configurable we mean being able to set parameters
affecting the properties of a component without
requiring its modification. The integration of
software component means the connection of
incoming and outgoing interfaces, i.e., interfaces
being used in the client role and in the server role
of a client/server component communication, while
immutability requires a component to be physically
immutable. Such physically immutable forms of
software are, for example, executable files or
dynamic link libraries (DLLs).

The most important criterion of our
component definition above is immutability
(Black-Box Reuse) since it allows dissociation
from object-oriented concepts such as Classes and
Design Patterns (White-Box Reuse). The
functionality of management framework presented
consists of the processing, filtering, and analysis of
management relevant data, the presentation in a
graphical user interface and user notifications at
the occurrence of predefined states that represent
important network states. The system allows that
one or more users may be notified over varying
communication channels.

Database
Component

Communication
Component

Front-End
Administrator

Legend

A B

Component A calls member
functions of component B
(A is a Client of B).

Front-End
User

Event
Controller

 Management
 Interface

Figure 3: INSMware components and their connectivity

The design of the individual INSMware
components (see Figure 3) is based on a domain
specification that subdivides the entire application
domain into subdomains. First, the data processing
system requires a connection to a data source
(physically existing system). This is realised by the
Management Interface component that exists,
similar to device drivers of an operating system, in
several different forms and is configurable, as
required, for different data sources.

The Management Interface component
interprets the received data, filters and analyses it,
and notifies the event controller component when
particular pre-defined exception states occur. Data
storage is accomplished by a call to the database
component and user notification is effected over
the communication components. It must be
emphasised that all information about the users
that need to be notified (e.g., access to user, user’s
role regarding the monitored processes) is stored in
the system. The communication component itself
consists of a set of several components that again
implement subdomains, e.g., sending of faxes,
voice mails, e-mails.

The user can visualise system states by using
the front-end user component and can maintain the
system by using the front-end administrator
component.

2.3 Application Domains and Sub Projects
INSMware was originally conceived to

monitor the various network elements and to
provide management services in heterogeneous
TCP/IP and ATM network environments. With
INSMware, a timely user intervention in the
running of the network processes is made possible
when required (e.g. user notification when a
network critical condition occurs).

To test the workability of the component-
based approach and to examine aspects of reuse at
component level, INSMware was applied to the
application domain of monitoring SNMPv1 and
SNMPv2 based managed objects. Two of the
components, namely the Management Interface
component and the front-end user component, have
to be modified to integrate new management
services (e.g. SNMP) into the management
framework. The database structure has to be
adapted to the management relevant information,

while the remaining four components can be
reused with no modifications. Adaptation is
required in the Management Interface component
since the data acquisition mechanism differs
between the different physical and logical managed
objects with different management protocols. The
application domain implemented by the
Management Interface component is actually very
limited and a universal Management Interface
component was developed which can be adapted to
different systems by configuration [6].

The graphical data representation supported
by the front-end component to visualise the
management information has to be adapted to the
respective application domain and remain user-
friendly and simple.

By generating source code responsible for
inter-component communication, a tremendous
reduction in the development time for front-end
components was possible. Using a CORBA/
DCOM bridge, a platform-independent connection
of partially generated front-end components is
achieved.

3 INSMware Implementation
This section presents details of the prototype

implementation of the INSMware concept.

3.1 SNMP
 SNMP is a set of network and system

management standards that describe the
asynchronous requests and responses for the
exchange of management data between SNMP
management objects [8]. SNMP was originally
developed by the IETF to manage TCP/IP
networks and network elements such as routers and
hubs [9]. The ‘basic’ SNMP (SNMP version 1) is
now in widespread use and the de-facto industry
standard. Virtually all major vendors of end-
systems, workstations and network devices such as
routers and switches offer SNMP support. The
widespread acceptance of SNMP has resulted in
adoptions such as the use of SNMP over OSI and
other non-TCP/IP protocol suites. In addition,
enhancements to the initial SNMP have been
pursued in a number of directions (e.g. RMON,
SNMP Version 2 and 3, ATM Management).

 The SNMP entities are an SNMP Manager, an
SNMP Agent and a Management Information Base

(MIB). The SNMP Manager is typically network
management software that implements the SNMP
protocol. The SNMP Agent resides in a managed
network element, such as a router or switch or in
an end-system, such as a PC or Unix Workstation.
The agent stores management information and
processes SNMP requests from the SNMP
Manager and responses from the agent itself. The
MIB is the database for management information
that is stored in ASN.1 syntax format [10].

 SNMP is a polling-based protocol. The
manager sends a request for information to the
agent (Get, Get Next operations) periodically and
the agent responds to that request and the manager
can modify and manipulate SNMP values in the
agent (Set operation). Beside that, an agent can
send an event to indicate an alarm or specified
condition (Trap operation) to the manager to mark
an important event, such as a critical network
error.

 There are two basic approaches to coexistence
in a multi-lingual network (several SNMP
versions), namely multi-lingual implementations
and proxy implementations [11]. Proxy
implementations provide a mechanism for
translating between SNMP versions using a third
party network element, and hence add complexity
into the management-services due to the translation
services required. The proposed INSMware
framework is based on a multi-lingual SNMP
implementation. The multi-lingual implementation
of the management interface supports the different
SNMP versions and enables the seamless
integration of the (typically monolingual) SNMP-
based managed objects. Besides that, additional
protocols or access policies can be integrated into
the Management Interface component.

3.2 Management Interface component

This section describes the Management
Interface component. The Management Interface
component connects the framework to the
underlying networking technologies as illustrated
in Figure 4.

Network
Management

Interface

Ethernet Future ATM

Figure 4: Network Management Interface

3.2.1 Architecture of Management Interface
component

One advantage of component oriented
software is the relatively easy reuse of individual
parts of the system. It became clear after the first
stages of the project, that major parts of INSMware
within the application domain integrated network
and system management will be reusable with no
or relative little changes to the components.
Modifications to the system to integrate new
services and reuse existing components are
required on the interface (gateway) to the user
(Front-End component for user interaction) and the
interface to the managed network (Management
Interface component for the communication with
the managed objects).

To improve and optimise the reusability of the
Management Interface component it was further
abstracted – therefore, the functionality of the
Management Interface component was split into
several smaller components (see Figure 5).

Filter
component

Middleware
(DCOM or CORBA)

SNMP driver

SNMPv2 driver

file system driver

Management domain
specific components

Intranet

Management Interface

Intranet

Figure 5: Architecture of Management Interface

The general functions for filtering of
management information offer a high potential for
reuse. This part analyses the information from the
managed objects and decides whether a critical
value has been exceeded or whether a critical event

has occurred. This evaluation can proceed without
further knowledge of the underlying technology
(e.g. whether SNMPv1 or SNMPv2) of the
managed objects because solely the protocol
independent data stream (from the managed
objects) has to be analysed. Therefore (because of
this high potential for reuse), the filtering was
encapsulated and implemented into an individual
component within the Management Interface.
Hence the problem occurs of how to bring the data
from the various kinds of managed objects into a
syntax that can be understood and proceeded from
the filtering component. The initialisation and de-
initialisation of a connection with a managed
object is individual for every kind of managed
object with different management functionality
(management protocols), e.g. the initialisation of a
connection and the access to a SNMP managed
object very much from the access to an ODBC
database or a file system. The potential for reuse in
this domain is relatively small and the component
cannot integrate new access technologies through
component configuration but through re-
implementation and integration of the new access
technologies. One exception are data sources that
are similar concerning their access, e.g. different
ODBC databases where relative little adjustments
are required. To be able to integrate different
access technologies within the management
domain a concept was developed that is similar to
the driver concept of operating systems. For each
access technology (e.g. SNMP), a specific
component is developed that implements a specific
defined interface and which can be used from the
general Filter component.

This specific component is responsible for the
communication with the managed object and
transforms/translates the received data into a
format that can be used by the Filter component.
Whilst developing different management domains,
it has been experienced, that a few parts –
particularly in the area of the interface
implementation – are similar. For these
similarities, source code can be reused. Beside
that, the Management Interface offers a high
degree of flexibility and provides good reuse for
additional and future management domains.

The introduction of an additional abstraction
layer within the Management Interface leads to
components with a very small level of granularity.

To minimise the associated disadvantages (e.g. loss
of performance and stability) no middleware for
distribution was introduced but the concept of
Dynamic Link Libraries (DLL) was used. Due to
the fact that it is an In-Process-Server, a complex
binding process is not required and the
communication can be performed very fast and
without changing tasks.

3.2.2 SNMP-Interface
The analysis and design stage of the SNMP-
Interface was based on the layered model of the
driver-components of the Management Interface
(Figure 1). Dynamic access mechanisms have been
implemented to read the configuration from an
ODBC database (MS Access is used as database
for the prototype). The prototypical
implementation of the Management Interface
component is written in C++. The SNMP functions
have been implemented using two different SNMP
frameworks based on C++: the SNMP interface of
the Microsoft Foundation Classes (MFC), which
only implements SNMPv1 and the SNMP++
framework from Hewlett Packard which offers
support for SNMPv1 and SNMPv2c [12].

Another advantage of the design that is
focused on integration of new management
services and managed objects is the easy
adoptability of the INSMware management
framework for new developments, e.g. for new
versions of SNMP. The integration of the
SNMP++ framework required only minor changes
to the source code of the management interface.
New SNMP functionality, such as SNMPv3, start
to occur and can be implemented into the
SNMP++ framework [13] and, therefore, with
minor modifications into the INSMware
framework. Figure 6 illustrates the layers of the
Management Interface and the integration of the
different SNMP frameworks within it.

Filter component

SNMP component

SNMP framework
HP / MFC

 Ethernet /
 ATM

GetTrap

INSMwareM
a
n
a
g
e
m
e
n
t

Figure 6: Management Interface layers

The INSMware management framework
offers management services for the collection and
monitoring of SNMP-Traps and offers services for
SNMP Get and GetNext operations. This enables
INSMware to act as a SNMP Manager. Traps,
which are sent from SNMP managed objects such
as routers or even from software in the network,
are collected and further processed for the Filter
component. The SNMP component then forwards
the data to the Filter Layer for further analysis. The
Filter component then analyses the data using the
configuration parameters from the INSMware
Framework. The filtering uses the source address
as well as the Object ID (OID) of the trap, e.g. to
discover a cold-start of a managed object.

Contrary to the passive management based on
traps, where the managed object itself is initiating
and sending management data, the Management
Interface also enables active monitoring based on
SNMP Get and GetNext operations. Here, the
Management Interface reads management relevant
data from the MIB of the managed objects to
monitor and discover status changes or network
conditions. The SNMP++ C++ libraries from
Hewlett Packard support the different data types
(Integer, Unsigned Integer32, Octet, OID, IP-
Address, Counter32, Gauge32 and Timeticks)
which are defined for SNMP. This MIB
management information is compared against
predefined values using different operators (e.g. <,
>, =) to discover status or administrational changes
such as change of System Administrator or critical
network conditions, such as high collisions on an
Ethernet or the failure of a WAN connection.

When the Management Interface discovers -
due to an incoming Trap or a MIB value - that a
critical event occurred it protocols the event and
arranges the notification of the related INSMware
user on its GUI or forwards the notification to a
manager via an external communication (e.g.
telephone or e-mail). The protocolisation and
messaging functions are provided by the Event
Controller and the Communication Component.

The specification of the relevant data for the
managed objects and events - for the configuration
of the SNMP managed objects (e.g. IP-Address,
SNMP Version and Community) and the related
Get/GetNext and Trap events (e.g. OID, Value,
Operant) - is fully implemented via the GUI and
saved in the management database (MS Access).
The type of notification can be dependent on
different parameters (e.g. dependent of day or
time) and can be configured for each individual
event that occurs. Furthermore, it is possible to set
the intervals for the polling and controlling of
events according to the requirements and to
individually add/delete intervals according to
specific management requirements.

3.3 Front-End

 As mentioned before, the second component
of INSMware that has to be adapted for new
services in the domain of Integrated Network and
System Management is the user and administrator
front end. Two different design approaches were
considered: A pure graphical approach, which uses
overview maps to represent the network structure
(as known from commercial Network and System
Management platforms such as HP OpenView),
and a more Microsoft Windows Explorer like view
showing the network structure as tree. The first
approach visualises the network structure very
clearly and several network management tools (e.g.
HP OpenView) use such an interface. Therefore,
they are typically well known for experienced
users of management tools, but they are also very
space consuming and become unclear for really
large networks, e.g. if an internetworking map
consists of 30 routers and 50 networks.

The tree view is less space consuming and, for
this reason, more suitable for large networks. A
problem of this approach is that the network

structure is not always hierarchical (e.g. cross-
links) and, therefore, the tree representation might
not represent the logical and physical network
connections as clearly as the established network
maps.

The main user interface of INSMware is
shown in Figure 7. The network structure is
represented by tree at the left-hand side. At the
right side, four tabs show information about the
node that is currently activated. If desired the user
can demand an overview map by pressing the
“Network View” button which then shows a
network map for the actual network or domain.

The view of the network is configurable for
every single user. Every user can name the nodes
in their preferred way and the part of the network,
which is shown by the tree, is determinable by the
user. In order to enable such flexibility, all the data
that is presented by the front-end is stored in the
system database. This concerns the entire network
structure – represented by the tree – as well as the
user settings for the configuration.

Figure 7 : INSMware user interface

The four tabs at the right hand side of the GUI
provide quick access to the most important
information of every network node. The
“Information” tab displays the basic information

like node name, description, location and contact
person at a first sight. The second tab visualises the
performance of the network node. The network
traffic, utilisation and error rates of the whole
network or every single port in case of a router or a
switch are presented. The “Log” tab displays an
event log for every node. Restarts, port failures and
breakdowns of the system will be registered with
date and time. The ‘Component configuration’ tab
will enable the user to reconfigure the managed
object, e.g. to reset a network interface. All the
configuration data – including the settings for the
notification events – are stored in the system
database.

The first prototype of the front-end
component is realised as a Visual Basic program,
but there are thoughts to produce a web based front
end – using HTML and ASP – in order to allow
management and configuration from everywhere
without installing client software.

4 Summary and Outlook
This paper has presented an integrated

approach to Network and System Management and
its prototypical implementation. The use of
componentware technology provides flexibility
and enables distribution of the management
system. The usage of component technology
allows the reuse of existing management,
messaging and control functionality to integrate
new management services.

Our future INSMware research aims at the
following goals:

(i) development of extended and new
forms of user interaction;

(ii) extension of INSMware to provide
unified, integrative end-to-end
management services for the different
High-Speed Networking technologies
and distributed applications.

Goal (i) includes the integration of Web-based
management services and the integration of
handheld devices, such as the Palm Pilot, to realise
ubiquitous computing facilities. As no component
models currently exist for such handheld systems,
one task will be to develop appropriate integration
mechanisms. Another effort in this area will be the

integration of speech input and output with
INSMware, which is to facilitate system operation
in scenarios in which no computing device is
available. It also provides a more intuitive way of
INSMware utilisation to the user. Another area for
future research is a Web based GUI.

In relation to goal (ii), INSMware's current
shaping focuses on the management of hardware
components. However, this represents only a
reduced view to real world information systems,
since a correlation exists between managed
hardware components (e.g. server systems) and
software components operated on the basis of that
hardware. Hence, future versions of INSMware
will also integrate the management of software
components and thus provide integrative
management facilities. To overcome architecture-
inherent limitation of componentware, we integrate
the Component Adapter approach to INSMware,
which allows the integration of even semantically
incompatible software components.

References

[1] Knahl, Martin; Hofmann, Holger D.;
Phippen, Andy. A Distributed Component
Framework for Integrated Network and
System Management. Information
Management and Computer Security, 7(5),
pp. 254-260, MCB University Press,
Bradford/UK, 1999.

[2] OMG. The Common Object Request
Broker: Architecture and Specification,
Revision 2.2. OMG Document 98-07-01,
Object Management Group, Inc., 1998.

[3] Brown, N.; Kindel, C. Distributed
Component Object Model Protocol -
DCOM/1.0. Microsoft Corporation,
Network Working Group, 1996.

[4] Knahl, M. et al. Integration of ATM
management procedures into native
integrated network and systems
management architectures. Proceedings of
the International Network Conference 1998,
Plymouth, pp. 91-97. July 1998.

[5] Hofmann, Holger D., Stynes, J.
Implementation Reuse and Inheritance in
Distributed Component Systems. 22nd
Annual International Computer Software
and Applications Conference
(COMPSAC'98), pp. 496-501,
Vienna/Austria, IEEE Computer Society,
1998.

[6] Amrhein, Matthias. Wiederverwendung von
Softwarekomponenten — dargestellt am
Beispiel eines Überwachungssystems mit
Sprachausgabe (Reuse of software
components – described by way of example
of a monitoring system with speech output).
BSc thesis, University of Applied Sciences
Darmstadt/Germany, 1998.

[7] CEK-97, Cekro, Z. (1997). Using the
SunNet Manager Platform to monitor
European ATM activities. 2nd ATM
Symposium, Brussels, November 21, 1997.

[8] Stallings, W. (1998). SNMP and SNMPv2 :
The Infrastructure for Network
Management. IEEE Communications
Magazine. March 1998.

[9] Case, J. D. , Darwin, C. , Fedor, M. ,
Schoffstall, M. L. . A Simple Network
Management Protocol (SNMP). Request for
comments (Standard) RFC 1157. Internet
Engineering Task Force. May 1990.

[10] ISO-87, ISO (1987). ISO 8824-1987:
Information Processing Systems – Open
Systems Interconnection – Specification
of the Abstract Syntax Notation One
(ASN.1). 1987.

[11] LEV-99, Levi, D. et al. (1999).
‘Coexistence between SNMP Versions’.
SNMPv3 Working Group. Internet Draft,
21 May 1999.

[12] Mellquist, Peter E., SNMP++: An Object-
Oriented Approach to Developing
Network Management Applications,
Prentice Hall, 1997.

[13] Katz, Jochen. SNMPv3 Support for
SNMP++. The Simple Times. Volume 7,
Number 1. March 1999.

[14] Zitterbart, Martina (ed.). Kommunikation
in Verteilten Systemen (Communication

in distributed systems). Informatik aktuell,
Springer, Berlin, Heidelberg, New York,
1997.

	Introduction
	The INSMware Project
	Integrated Management Services
	INSMware Architecture
	Application Domains and Sub Projects

	INSMware Implementation
	SNMP
	Management Interface component
	Front-End

	Summary and Outlook
	References

