
Section 4 – Computing, Communications Engineering and Signal Processing & Interactive 
Intelligent Systems 

255 

Graphical Environment Tool for Development versus 
Non Graphical Development Tool 

S.Daniel and P.Filmore 
 

Centre for Information Security and Network Research, 
University of Plymouth, Plymouth, United Kingdom 

e-mail: info@cscan.org 

Abstract 

This paper highlights the differences, advantages and drawbacks of a graphical environment 
tool for development (LabVIEW) against a non graphical development tool (Java) a text base 
programming language. The study is centred on the developments and analysis of a sever-
client application using these different technologies. To understand the differences between 
the different technologies, it’s really useful to come back to the origins of the human computer 
interaction and look the differences between the different interfaces. This paper matches then 
some of the advantage and disadvantage for using these different technologies. It is found that 
JAVA has advantages in resources as it gives smaller lighter source code and LabVIEW has 
advantages in time, it is faster and easier to program. 

Keywords 

Internet, client-server, command line, graphical user, LabVIEW 

1 Introduction 

First of all, this paper aim to review the difference between a graphical user interface 
(GUI) programming tool against any other type of programming tools; this will be 
reviewed around a web application by building a simple client-server application. 

In order to compare this technology we must come back to the source; the user 
interface. It’s not the first time that graphical user interface has been reviewed. Since 
the very beginning of computer, human computer interaction (HCI) has a key role in 
the computer usability. 

The first interface to be developed was the command line interface (CLI) which is a 
text based environment totally neutral. Its successor; the graphical user interface 
which replaces most of the command by graphical icon/button reflecting a real life 
environment. This was followed by natural user interface (NUI) which adds physical 
interaction with the graphical user interface (ex: Microsoft Surface). Qt this point of 
time, organic user interface (OUI) claims to adapt themselves to the current 
application (Chapman, S., 2008). 

 



Advances in Communications, Computing, Networks and Security 7 

256 

 Metaphor Relationship Control Flexibility Behaviour 
CLI Textual Abstract Directed High Static 
GUI Graphical Indirect Exploratory High-Medium Dynamic 
NUI Physical Direct Contextual Low Realistic 
 
Key examples:  CLI  Microsoft DOS  
  GUI  Microsoft Vista 
  NUI  Microsoft Surface 

Table 1: The difference between interfaces (Daniel Makoski, 2008): 

1.1 From a user point of view graphical user interface are very common 
nowadays: 

Every computer gets now graphical user interface, even mobile devices have their 
own graphical user interface. These interface have been develop to help user to 
match their personal behaviours to the computer by association of symbols, the 
computer interface looks pretty much as a virtual office you can find the same kind 
of workspace with the tool used in real life also imitated to fit the needs of 
computing. 

Most of the advantage and drawback have already been surrounded for the basic 
users. 

Makoski (2008) has identified major Key points between command line interface 
and graphical user interface. These are: 

Ease of use New user will have facilities to get into the graphical user interface 
as it tries to fit the behaviours at the opposite the command line 
interface will be much difficult to use as you need to memorize the 
command needed for your action that you intend to do. 
 

Control Even with all the buttons we would, the command line interface 
offer more control for advance user over the graphical user 
interface. 
 

Multitasking That is where the graphical user interface gets most of their power, 
you can display as many information as you want on your display 
and organize them as you want. It’s also possible to control 
multiple objects at once. 
 

Speed Because the graphical user interface needs to point and click with 
the mouse the graphical element you want to use, it seems to be 
slower than the command line when you only need your keyboard 
and perform action with a single command where you may need 
several clicks on a graphical user interface. 
 

Resources That isn’t a secret graphical user interface needs more resources to 
load the graphics and manage the interaction whereas the command 



Section 4 – Computing, Communications Engineering and Signal Processing & Interactive 
Intelligent Systems 

257 

line interface needs a minimum of resources to display textual 
information. 
 

Scripting A command line interface enables to execute small program to 
automate some of their task. This feature can be find also in the 
graphical user interface under the name of macro which memorizes 
the action perform in order to automate them. 
 

Remote 
access 

Most of the recent graphical user interface already includes remote 
access without the need to perform any command line. 

2 Evaluation of the technologies 

It is useful to compare these technologies: 

a) Text based programming language: 

Often shortened to code, this programming language is made of text. It could be 
compared to command line, each line of code represent a specific command line 
which is process by the compiler to provide the final application. So the developer 
needs to write himself all the code, text to build an application. 

As reference we use Java because it’s widely use over the world for creating desktop 
and web application and well known to be cross platform. Java application can be 
use as well with Linux, Mac, or Windows and can even be embedded in a web 
browser; it uses a run-time engine available for these different platforms. 

b) Visual programming language: 

Also shortened to G language for graphical language, this programming language 
change totally from the text based programming language as there is no code. 
Everything is visual, instead of command we have box and wire to interconnect these 
box together and make a more advance function. It is a dataflow programming; data 
linked the application are visually connected in the source. 

So LabVIEW is the reference for this review. As well as Java it’s a cross platform 
language using its own run-time engine for Linux, Mac, windows and web browser. 

c) Client-Server application:  

The client-server application is a very basic application which uses the TCP protocol 
to send and receive data through Internet or a network.  

In both Languages Java and LabVIEW, we will produce a server application which 
sends some data and a client application which receives these data. 

 



Advances in Communications, Computing, Networks and Security 7 

258 

2.1 Hypotheses and Measurements 

Previous studies on human computer interaction. All the key points previously 
highlighted are reused there for the comparison between the development languages. 

2.2 Common perceptive: 

1. Graphical language is easier to use. 
2. Text language gives more control. 
3. Graphical language allows showing more information (multitasking). 
4. Text language is faster to write. 
5. Graphical language is heavier. 

These hypotheses have all been discovered along general usage of user interface. We 
are now looking forward to see if these hypotheses are also applicable to the 
programming languages. Point by point we are going to demonstrate each of these 
hypotheses to finally conclude which of them is the best and in which circumstances. 
For each hypothesis, we will measures and compare the result between the 
languages. 

2.3 Methods: 

1. Ease of use: 

a. Analysis of my personal experimentation. 
b. Student survey (Mark Yoder and Bruce Black, 2006). 

2. Control: 
a. Number of function available. 

3. Multitasking: 
a. Review of the programming environment. 

4. Speed: 
a. Time to make an application. 

i. Creating source. 
ii. Compiling. 

iii. Deluging. 
5. Resources: 

a. Number of lines/blocks. 
b. Source files size. 
c. Computer memory usage. 

3 Demonstrations and Experimentations 

Ease of use, control and multitasking: 

Evaluation of the programming environment. 
Working with LabVIEW feel as simple as playing Lego, you just have to pick the 
block you want connect it to you data and your function is done, personally I felt 
really confident on LabVIEW after a few hour of trainings where I was feeling a bit 
confuse at the same time using Java as long as you know how to program Java is 



Section 4 – Computing, Communications Engineering and Signal Processing & Interactive 
Intelligent Systems 

259 

correct, but for a non programmer it we be difficult to remember every command and 
write the perfect syntax needed for Java. At the opposite, when a newbie in coding 
can get lost to remember any command in Java, that give great control over the 
people who masteries these language they can do much more thing than the 
traditional uses, in LabVIEW we hurt ourselves again the graphical wall which allow 
us to use only blocks already created. This last point tends to disappear as we can 
create our proper object, class … but it’s still taking more time. Another advantage 
of graphical programming is the ability to see on the screen all the data that you are 
working on and their relation, you can easily map your idea on LabVIEW where you 
need to produce an algorithm even before thinking to start any coding in Java.  

LabVIEW source (Figure 1) shows clearly whereas Java source (Figure 2) is less 
clear, we need to read the comment to understand what it is actually doing. 

In another study “a study of graphical vs. textual programming for teaching DSP” 
Yoder M. and Black B. (2006) intend to find which of LabVIEW or MATLAB 
another text based programming much closer to LabVIEW in his functionality; 
student rather prefer to use. They made junior-level student teaching discrete-time 
signal processing (DSP) on both languages LabVIEW and MATLAB. “Of the 64 
students that took the survey, only 3 had learned LabVIEW prior to learning 
MATLAB.” (Yoder M. and Black B., 2006). This can be explained by the fact that 
MATLAB is required in some other courses. 

Table 2 shows the result of this study; almost 3 to 1 student preferred to use 
LabVIEW. “They say it is easier to learn and more understandable.” In another 
advanced user state “When you know what you are doing, it’s much faster to type a 
program than to select icons from menus and point and click to connect them”. 
(Yoder M. and Black B., 2006). This last result can be applied to most of the text 
based language and also to Java. 

 
Table 2: Some results of the student survey (Mark Yoder and Bruce Black, 

2006) 

Speed: 

In term of time of coding this is very variable form beginner to advance users. So 
measuring the time to make the source code on both languages should not provide 
significant result apart of the user experience. What we can say for sure is that is still 



Advances in Communications, Computing, Networks and Security 7 

260 

faster to write that pointing and clicking as long as you use only your keyboard. Then 
when it comes interesting is for the compiling time. 

In LabVIEW there is no such thing as compiling, it run the application straight from 
the block diagram so no compiling time where in Java you have to compile you 
code to produce the final application, this is very short few second depending of you 
computer but a real drawback compare to LabVIEW. 

For the deluging, in both Java and LabVIEW you are able to use breakpoint to stop 
the application at a specific line or place and variable watcher or probes to observer 
the current value of data. But due to the graphical interface of LabVIEW it’s much 
easier to identify problem on a flowchart than it is in a list of command. The 
physical positions of the different block help him to target where the problem is. So 
again LabVIEW seems to be much faster. 

Resources: 

 
Figure 1: LabVIEW Client 

 
Figure 2: Java client 



Section 4 – Computing, Communications Engineering and Signal Processing & Interactive 
Intelligent Systems 

261 

I have been able to observe on different source codes (extract: figure 1 & 2), it’s 
quite obvious, the Java version of the client-server application is the smallest just 33 
and 37 lines of Java code for this basic version without any graphical interface where 
LabVIEW accuse 27 and >50 blocks it’s also include a small graphical interface. In 
term of visual space LabVIEW seem to be again bigger than Java to shows all the 
block diagrams code. 

The difference become much sensitive when looking at the source file size; around 
4KB for the Java source and 45KB for the LabVIEW source it’s more than ten times 
the size of the text based version. 

For the memory usage; Java need only the java run-time engine to run and don’t 
need the full development kit. To work straight from the block diagram LabVIEW 
language need to keep the development kit running which take much more memories 
than a simple run-time. LabVIEW also have the possibility to build an executable 
application which doesn’t need the development kit to work but just a LabVIEW 
run-time engine similar at Java. 

3.1 Results and Comments 

 LabVIEW is easier to use than JAVA or MATLAB. 

 Symbols are easier to recon than reading text.  

 LabVIEW is faster to program than traditional text based language. 

 Much less error during coding (no syntax). 

 JAVA takes less resources. 

 Pure text is still smaller than LabVIEW. 

4 Evaluation and Conclusion 

In the first part of this review we remember have seen the different key point 
between command line interface and graphical user interface; text based languages 
were supposed to have more control over the programming be faster to code and be 
small. And the graphical based languages were supposed to be easier to use and 
multitask. Finally we break the myth of text based programming is faster. That is the 
only real change between general interfaces a programming interface. 

In the author opinion, the other drawback of LabVIEW against traditional 
programming is that it takes more resource and gives less control. These are not 
going to be some serious drawback as for the resources nowadays computers are 
powerful enough to run any graphical programming environment and running them 
without any problem. Memory isn’t a problem as in the past as memory is now really 
cheap. The only braking point is the lack of control. LabVIEW is seriously focus on 
this point and are trying to give the maximum to the user and in each new version 
they provide more and more feature also the ability to build almost anything as our 
own block, library, class and much more. 



Advances in Communications, Computing, Networks and Security 7 

262 

 Because it is particularly easy and fast to program under LabVIEW, it’s really 
interesting to use it for prototyping software or any application you can just sit and 
start programming what in your mind and try it straight away without having to 
spend hours and hour to determine the perfect algorithm or debugging your 
application in order to make it running. 

LabVIEW is a great tool for prototyping, it allows to program fast and test the 
application as soon as possible then we can use another language as Java or C++ to 
program the final application and optimize it at maximum which isn’t rally the case 
on LabVIEW. To conclude LabVIEW is perfect to make a prototype but doesn’t 
replace text based language as it need its own run-time less common than other 
languages as Java or C. LabVIEW is complementary to the text based language and 
help to save some precious time. 

5 References 

Blake J. (2009) ‘Deconstructing the NUI: The Natural User Interface Revolution’, 
Deconstructing the NU, blogger, [online] Available from: 
http://nui.joshland.org/2009/01/natural-user-interface-revolution.html (Accessed 31 March 
2009). 

Chapman S. (2008) ‘UX Evangelist: Windows 7 NUI: Stepping Beyond the GUI’, UX 
Evangelist, blogger, [online] Available from: 
http://uxevangelist.blogspot.com/2008/06/windows-7-nui-stepping-beyond-gui.html 
(Accessed 31 March 2009). 

Makoski D. (2008) ‘Beneath the Surface’, pptx, [online] Available from: 
http://www.microsoft.com/surface/ (Accessed 31 March 2009). 

Reyes A. (2008) Predicting the past, MP3, Sydney Convention Centre, [online] Available 
from: http://www.webdirections.org/resources/august-de-los-reyes-predicting-the-
past/#description (Accessed 31 March 2009). 

Sun Microsystems (n.d.) ‘Writing the Server Side of a Socket’, [online] Available from: 
http://java.sun.com/docs/books/tutorial/networking/sockets/clientServer.html (Accessed 30 
March 2009). 

Yoder M. and Black B. (2006) ‘A Study of Graphical vs. Textual Programming for Teaching 
DSP’, Rose-Hulman Institute of Technology, [online] Available from: 
http://zone.ni.com/devzone/cda/tut/p/id/3798 (Accessed 26 March 2009). 

Wong W. (2006) ‘Graphical-And Text-Based Programming: Complementary, Not 
Competitive’, [online] Available from: 
http://electronicdesign.com/Articles/Index.cfm?AD=1&ArticleID=13241 (Accessed 26 March 
2009). 




