
PRACTITIONER PERCEPTION OF COMPONENT BASED SOFTWARE
DEVELOPMENT

A. Phippen
School of Computing

University of Plymouth
Plymouth

United Kingdom
andy@jack.see.plym.ac.uk

S.M. Furnell
Department of Communication and

Electronic Engineering
University of Plymouth

Plymouth
United Kingdom

sfurnell@plymouth.ac.uk

H.D. Hofmann
ABB Corporate Research Center

Heidelberg
Germany

h.hofmann@web.de

ABSTRACT

Component-orientation can be viewed as one of the
leading edge technologies in software development, in
particular for the development of eCommerce systems.
The industrial origins of component-orientation have
resulted in a knowledge base in the area that is heavily
anecdotal and subject to vendor bias. Empirical evaluation
of component-based techniques within industrial software
development projects has resulted in a number of theories
that are at odds with conventional wisdom. The surveying
of practitioners enables these theories, and conventional
wisdom, to be further tested. The assessment presented in
this paper highlights problems with both the technologies
themselves and also the wider organisational issues that
need to be addressed when adopting such techniques. A
combination of case study and survey research enables
effective conclusions to be drawn regarding the impact of
component-orientation upon the software development
process.

KEYWORDS

Component based software development, COM, CORBA,
Technology assessment.

INTRODUCTION

It is often stated that component-oriented software
development underpins the implementation of
eCommerce systems (for example, see Hess 2000). The
level of software reuse afforded by such an approach
ideally suits the assembly and extension approach to
software development that is often seen in eCommerce
applications. The influence of component-orientation can
be seen in the client side of web applications, extending
standard interface functionality with downloadable
controls and plugins. More importantly, it plays a growing
part in the extension of server side functionality – the
foundation of eCommerce applications. A common

approach to extending the functionality of a web server is
to interface functionality developed in the form of
software components with the web server object model
via a component standard (for example, Microsoft’s
Component Object Model (Microsoft 1997) or OMG
Common Object Request Broker Architecture (CORBA)
(OMG 1995)).

In the more general area of software development,
component-orientation is also seen as state of the art, with
much literature predicting it as the model of software
development that will finally enable large scale software
reuse (for example, see Brown 1998, Chappell 1997,
Computer Weekly 1998, Kiely 1998). However, it is
difficult to assess how the development process is affected
by such technologies.

While component orientation originates from academic
research over thirty years ago (Mcillroy 1969), it has only
been in recent times, with industry support, that
component orientation has become a viable approach to
software development. It is now acknowledged (see
Maurer 2000) that component-orientation comes primarily
from industrial innovation with little influence from the
academic domain. As such, much of the information
regarding the technique can suffer from lack of evidential
support and from vendor bias. We can, at best, identify a
‘conventional wisdom’ regarding component-orientation
and how it affects the development of software. We refer
to this as conventional wisdom as it is knowledge that has
developed without a sound body of evidence to support it.
Drawing from industrial sources (for example Brown
1998, Chappell 1997, Computer Weekly 1998, Kiely
1998, McInnis 2000) we can identify a number of
different outcomes through the use of component
orientated techniques:

1. Component-orientation increases development

productivity through software reuse.

2. Component-orientation enables cross-platform and
cross-language interoperability

3. Component-orientation will reduce maintenance costs
and increase reliability

4. Component development is made possible through
component standards

5. Component-orientation provides functionality to aid
in the distribution and scalability of applications

Research carried out by the authors has found a great deal
of difference between perceived beliefs regarding the use
of component-orientation and the reality of their use. The
research aimed to empirically assess the impact of
component-orientation upon software development. Two
distinct areas of research were carried out. Initially, case
studies in two large-scale industrial software projects
enabled an in depth assessment of component-orientation.
A second strand of research aimed to validate and develop
findings from the case studies by assessing the experience
of other practitioners. In initial discussion, this paper
reviews the case studies and the theories drawn from
them. It then focuses upon the second phase of the
research, detailing the approach taken in carrying out this
assessment, and discussing the findings in relation to both
case study findings and also the conventional wisdom
regarding component-orientation identified above.
Conclusions drawn from this discussion are put forward
considering the suitability of component-orientation as a
future mainstream software development technique.

CHALLENGING THE PERCEPTION OF
COMPONENT-ORIENTATIO N

Initial study into the impact of component-orientation
upon software development centred upon two case
studies. The first case study used a CORBA component
model in the development of a telecommunications
architecture across disparate network technologies. It was
particularly focussed upon the integration of mobile and
fixed network technologies. It was a project whose
development teams were distributed across Europe, with
approximately thirty developers in eight diffe rent
locations. Architectural designers were also distributed in
other locations across Europe

The second case study was based on a network
management Independent Software Vendor (ISV) in their
first year of operation. The organisation was a Small to
Medium sized Enterprise (SME) who wished to
componentise the business functions to be able to offer
similar functionality with both traditional custom software
applications and web based software products.

Propositions defined for the study of the cases focussed
upon assessing the degree of conventional wisdom that
would hold within a practitioner environment. In each
case the adoption and use of component technologies

introduced distinct problems that challenged our initial
beliefs in the use of component-orientation. We developed
a number of theories regarding component-orientation
from case study findings:

1. Adopting and using component technologies in

software development processes will affect process
activities.

2. An awareness of the issues involved in the adoption
and use of component technologies can ease their
integration.

3. Component technologies ease the development,
integration and deployment of distributed systems.

4. Uncontrolled adoption and use of component
technologies can have a negative affect upon a
development project.

5. Adopting and using component technologies in
software development processes will affect process
activities.

6. An awareness of the issues involved in the adoption
and use of component technologies can ease their
integration.

7. Similar issues with component-orientation occur
when using different technologies from the same field
(i.e. Microsoft based, rather than OMG based
technologies).

8. Problems in the use of component technologies can
be avoided through greater knowledge

The case studies were extremely valuable in determining
that there were issues in the use of component-orientation
that were not readily addressed through knowledge
available to practitioners from industrial literature.
However, in order to strengthen the generalisability of
results, it was decided to carry out a survey of other
practitioners who had used component based
technologies.

SURVEY METHOD AND CONSTRUCTION

The survey was conducted in order to obtain quantifiable
opinion on case study results and to assess the normality
of experiences within the studies. This, in turn, would
either strengthen or reject theories developed during case
study research. It was decided that rather than use a
traditional survey approach (for example, postal or
telephone), an online, World-Wide Web (WWW) based
survey would be used.

It was important to obtain responses from practitioners
actively involved in the development of component-based
systems. As potential respondents were to be contacted
via email, a list of email addresses was required. The most
effective information resource in addressing both of these
requirements in obtaining responses was to go to mailing
list archives in the area. By going to list archives, email

addresses could be obtained from developers who were
active and experienced in the area of component-based
development. In general, questions and discussion from
the chosen archives (CORBA -DEV and
DCOM@discusss.microsoft.com) asked in the mailing
lists were also complex in nature – therefore
demonstrating a good level of knowledge in the area.
Additionally, two personnel from each of the earlier case
studies completed the survey to see whether responses
from project developers would reflect case outcomes.

The survey focussed was divided into two distinct
sections:

Use of component technologies: To establish the
respondent’s experience using component based
techniques.

Component technologies and the software
development process: Focusing more upon findings from
the case studies - a set of questions derived from the
theories developed from the case studies.

Initial questions were generally presented in a closed form
with the opportunity to elaborate for the respondents only
in a few cases. However, the section of the survey derived
directly from case study theory took the form of bipolar
agree/disagree questions, where a statement is presented
and the respondent is asked to what degree they agreed or
disagreed with the statement. Based upon survey
responses, it would seem that these attempts to avoid
guiding the respondent to reflect case study findings were
successful.

SURVEY FINDINGS

Two hundred practitioners were emailed during March
2000. Forty-three responses were obtained, providing a
response rate of 22%. As expected from the type of
respondents selected for the survey, experience in
component orientation was good, with a mean of 3.1
years.

In terms of types of experience that respondents had,
Table 1 illustrates a distinction between those with COM -
and CORBA -related experience. These are broad
definitions, COM experience encapsulating COM, DCOM
and COM+, and CORBA experience encapsulating
CORBA and Enterprise JavaBeans (EJB). As an outcome
from the case studies was that there may be differences in
experience depending on whether CORBA- or COM -
related technologies are used, it was important to be able
to distinguish experience based upon knowledge of the
different technologies. The “neither” response came from
the respondent who had used the “CORBA-like” model.

Table 1 - COM & CORBA related experience among
respondents

Opinion %age
COM related 15
CORBA related 10
Both 17
Neither 1

The level of project experience was also high. On average,
respondents had used component technologies on over six
projects. The projects varied in scale from small
investigations right through to pan-enterprise applications.
Distribution across project types was quite even, with
"product" and "enterprise" projects being the most
common scale. Elaboration of types of projects from
respondents suggested that a good proportion (40%) of
respondents had experience of component orientation in
eCommerce-type applications.

Practitioner Perception based upon Case
Study Theories

As previously stated, the aim of the survey was to
determine the generalisability of the earlier findings from
case studies. Many of the theories developed from the
studies centre around the adoption of component
technologies into the development process. We had found
that if this adoption was not controlled severe problems
could be experienced. Therefore, our first question
directly addressed this issue, asking whether the
respondent believed that the integration of component
orientation was straightforward. While 74% of
respondents stated that integration was a straightforward
process, the number of negative responses is significant.
Certainly, it demonstrates that our experiences in the case
studies were not entirely isolated. Those who did
experience problems elaborated on their response, a lot
highlighting problems with the technologies themselves.
Additionally, comments were made relating to
organisational and personnel issues.

Question 2: Component-orientation is easily adopted
into the development process

This question was posed because our first case studies
seemed to demonstrate that adopting component-
orientation into a development process was problematic.
The results from the survey (illustrated in Table 2) would
suggest that the first case experience was not the norm and
that component technologies can be adopted in a
straightforward manner.

It should also be noted that while the majority response
for this question has been positive, there is still a fair
proportion of respondents who do not believe that

component technologies are easily adopted into the
development process. Therefore, while our difficult
experiences were certainly in the minority, they were by
no means unique.

Table 2 - Component technologies can be easily adopted

Opinion %age
Strongly agree 0%
Agree 54%
No opinion 3%
Disagree 27%
Strongly disagree 8%
No response 8%

Question 3: Component technologies can be adopted
independently of wider organisational consideration

Again, deriving from our experiences in the case studies,
this is also an issue that is introduced in industrial
literature, which states that an organisational embracing of
component orientation is required in order to exploit its
potential (for example Computer Weekly 1998, Jacobsen
et. al. 1997, Kiely 1998).

There is a more or less equal split in the responses here
between those who agreed or strongly agreed with the
statement, and those who disagreed or strongly disagreed.
If the survey respondents reflected case study findings, we
would expect those who agreed with the question to have
experienced problems with adoption and use (as occurred
in one of our case studies), while those who disagreed had
a far more straightforward adoption (as occurred in our
other case study). The survey responses showed no such
patterns.

Table 3 - Component technologies can be adopted
independent of organisation issues

Opinion %age
Strongly agree 10%
Agree 30%
No opinion 10%
Disagree 35%
Strongly disagree 10%
No response 5%

Question 4: Project management is unaffected by
component technologies

Table 4 demonstrates a very strong response disagreeing
with the statement presented in the questionnaire. It
confirms one of the issues arising from one of the case
studies, where component orientation was considered to
be an implementation technology that was not of concern
for the project management. This response greatly
strengthens the opinion that this approach to the use of

component technologies was wrong, and that project
managers need to be aware of the issues in their use as
much as developers.

Table 4 - Project management is unaffected by component
technologies

Opinion %age
Strongly agree 7%
Agree 5%
No opinion 2%
Disagree 45%
Strongly disagree 36%
No response 5%

Question 5: Component-orientation makes software
reuse easy

One of the underlying philosophies of component
orientation is that it makes software reuse possible on an
industrial scale. Industry literature (for example Chappell
(1997), McInnis 2000) is especially keen on the reuse
aspect of component orientation. The case studies had
experienced mixed results in generating large-scale reuse:
the firs case study had not been at all successful in
developing reusable components, whereas the second
developed a highly reusable component library. The
response from respondents in the survey (see Table 5)
would also indicate that the first case study experience
was not typical - the majority of respondents either agreed
or agreed strongly with the statement.

Table 5 - Component orientation makes software reuse
easy

Opinion %age
Strongly agree 26%
Agree 55%
No opinion 2%
Disagree 10%
Strongly disagree 2%
No response 5%

However, a significant proportion (28% in total) either
disagreed or strongly disagreed. This promoted an
examination of responses against the type of technologies
used. It was found that the majority of negative responses
came from respondents who only had experience with
CORBA technologies. This would highlight a different in
reuse based upon the choice of technology.

Question 6: Using component technologies is
straightforward

This question relates to the complexity of component
technologies, in the view of practitioners who have used
them. This, in turn, impacts upon their adoption into the

mainstream. The interest arises in comparison with some
of the more positive responses (for example, the responses
to the questions “Adoption is straightforward” and “reuse
is easy”). One might assume that those positive outcomes
signal the ease of use of component technologies.
However, the fact that the majority response were to the
contrary suggests that it is only when developers are fully
aware of issues in the use of technologies that they
become truly easy to use.

Table 6 - Using Component Technologies is
Straightforward

Opinion %age
Strongly agree 7%
Agree 26%
No opinion 17%
Disagree 43%
Strongly disagree 2%
No response 5%

Question 7: Component based development makes
system deployment easier
Question 8: Component based development makes
system maintenance easier

The final two questions addressed issues related to the
underlying philosophy regarding the use of component
technologies that yielded inconclusive results from the
case studies. Initial results (see Table 7) show divided
opinion on the issue of deployment.

Table 7 - Component based development makes system
deployment easier

Opinion %age
Strongly agree 17%
Agree 24%
No opinion 21%
Disagree 26%
Strongly disagree 7%
No response 5%

Another purported strength of component orientation is
that it eases system maintenance. Theoretically, the use of
interfaces, black box and binary reuse means that a
component can be bug-fixed and plugged into a live
system without any component clients needing to be
brought down in the maintenance (for example, see
Szyperski 1998). As this issue could not be tested in either
of the case studies (as, in each case, they were only
studied until the first version release of the software), this
final question was used simply as a test of practitioner
experience. It would seem, given the positive responses to
the question that this aspect of component orientatio n is
borne out by practitioner experience.

Table 8 - Component orientation makes system
maintenance easier

Opinion %age
Strongly agree 26%
Agree 55%
No opinion 2%
Disagree 10%
Strongly disagree 2%
No response 5%

COMPARING SURVEY RESPONSES WITH CASE
STUDY THEORY

This section considers how the survey responses have
influenced the theories regarding component orientation
developed from the case studies:

Adopting and using component technologies in
software development processes will affect process
activities
There are some very positive responses in the survey that
strengthen this proposition. In particular questions related
to project management, deployment and all resulted in
responses that would confirm the effect the component-
orientation has on development activities.

An awareness of the issues involved in the adoption
and use of component technologies can ease their
integration
The major theme that runs through responses in this
survey reflects the fact that learning and understanding of
component technologies is the issue in using them.
Therefore, this theory has been greatly strengthened by
survey results.

Component technologies ease the development,
integration and deployment of distributed systems
The distributed aspect of component-based development
was not explicitly addressed in the survey, but positive
responses to question 8 highlight the fact that component
technologies can be used to address the low level elements
of distributed development.

Uncontrolled adoption and use of component
technologies can have a negative affect upon a
development project
Drawing from the central outcome of the survey relating
to the need for understanding, the proposition is
demonstrated to have some validity. Undoubtedly, the
exp eriences of the first case study are very much in the
minority among component practitioners. They are not,
however, unique. This in itself strengthens the issues
identified in this case study as possible outcomes when
using component technologies, if such use if not carefully
considered.

Similar issues with component-orientation occur when
using different technologies from the same field (i.e.
Microsoft-based, rather than OMG-based
technologies)
Several questions have highlighted differences in
experience relating to the types of technologies used by
respondents. However, we cannot illustrate any explicit
trends throughout the survey (i.e. there is nothing to
suggest that CORBA will always result in poor
development, whereas COM will always results in
effective development). Therefore, once again, were are
drawn back to the issue of front-loading knowledge when
using component-oriented techniques – with an awareness
of the issues and an understanding of the technologies,
effective development can be achieved, regardless of their
type.

Problems in the use of component technologies can be
avoided through greater knowledge of the technologies
involved
It has certainly been illustrated in the case study that
awareness and understanding are the important issues in
using component technologies.

CONCLUSIONS

Component technologies represent a significant
contribution to the domain of software engineering and
the deployment of related systems. However, evidence
suggests that whilst the conceptual advantages of such
approaches are recognised, the practical experiences of
developers are often somewhat different. The survey
results indicated that while component-based development
can indeed be seen to deliver benefits, these are most
likely to be realised if the correct perception of the
technology has been adopted by both the developers and
their parent organisations. An understanding and
appreciation of the propositions supported by the survey
will ensure that such a perception can be successfully
achieved.

REFERENCES

Hess (2000). “A .NET Primer”. Microsoft Corporation.
http://msdn.microsoft.com/workshop/essentials/hess/
hess12112000.asp

Brown, J.(1998) “Software Strategies – The Component
Decision”, The Forrester Report.
http://www.forrester.com/

Chappell, D. (1997). “The Next Wave – Component
Software Enters the Mainstream”. Chappell &
Associates. http://www.chappell.com

Computer Weekly (1998). “Forget Objects, Use
Components”. Computer Weekly, 19 November
1998.

Jacobsen, I., Griss, M., Jonsson, P. (1997) “Software
Reuse - Architecture, Process and Organization for
Business Success”. ACM Press. ISBN 0-201-92476-5

Kiely, D. (1998). “The Component Edge – An
Industrywide Move to Component-Based
Development Holds the Promise of Massive
Productivity Gains”. Information Week April 13,
1998.

Maurer (2000). “Components: What If They Gave a
Revolution and Nobody Came?”. IEEE Computer
June 2000.

McIllroy, D. (1969). “Mass Produced Software
Components”. Appearing in Naur, Randell & Buxton
(eds.) (1976). “Software Engineering Concepts and
Techniques – Proceedings of the NATO
Conferences”. Petrocelli/Charter. New York.]

McInnis (2000). Component Based Development:
Concepts, Technology and Methodology. Castek
Software Factory Inc. http://www.cbd-hq.com/

Microsoft (1997). “Windows DNA – Windows
Distributed interNet Applications Architecture”.
http://www.microsoft.com/dna/

Microsoft Corporation (1997). “Vertical Industry
Specifications Supported in Windows DNA”.
http://www.microsoft.com/industry/

OMG (1995). “CORBA: Architecture and Specification.
Version 2”. OMG 1995.

Rogerson, D. (1996).” Inside COM”. Microsoft Press.
ISBN 1-572-31349-8.

Schuman & Presser (1996). “Questions and Answers in
Attitude Surveys”. Sage Publications. ISBN 0-7619-
0359-3.

Szyperski, C. (1998). “Component Software – Beyond
Object-oriented Software”. Addison-Wesly. ISBN 0-
201-17888-5

