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Abstract

The major objective of all communication techniques is accomplishing the fastest way of data
transmission through a communication channel, i.e. trying to reach the Shannon’s Channel
Limit. One of the solutions to these developments is error correction coding technique which
is currently employed in broadband satellite communication and data storage. Constructing a
Trellis, which is the graphical representation of the code; reduces the decoding complexity,
thereby improves transmission efficiency. This project will investigate the way trellises are
constructed for different types of codes, mainly linear block codes and how they are used to
correct errors on transmission channels.

The project involves in the study of the trellis diagrams for both the convolutional and block
codes; and focuses on the encoding and decoding of linear block codes using the trellis
diagram. The implementation of the trellis diagram of the Hamming code for both the
encoding and decoding process has been done using the MATLAB software. The code has
been tested for various codewords and the results are collated in tables.
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1 Introduction

A Dbasic block diagram of a communication system is illustrated below. The
information source can be either analog source or digital source. The analog source
of information needs to be converted to digital bits for efficient transmission and this
can be done using a sampler and analog to digital converter. In order to represent the
digital information using the smallest number of bits, techniques such as removal of
redundancy is used. The conversion of analog data into digital information efficiently
is broadly classified as source coding. The channel encoder prepares the data from
the source encoder for digital modulation and efficient transmission. The modulator
matches the output of the channel encoder to the transmission channel. In the
receiver section, the vice versa is performed to the received data to obtain the
original data with minimum errors (Michelson and Levesque, 1985).
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Figure 1: Block Diagram of a Digital Communication System (Michelson and
Levesque, 1985)

The concept of error correction coding was introduced to minimise the errors
occurring during the transmission of data and to recover the original data with
minimum errors. In order to transmit information reliably, the information rate must
be less than the channel capacity, and this was stated by Shannon’s noisy coding
theorem. It states that “ It is theoretically possible to transmit information through a
noisy channel with arbitrarily small probability of error provided that the information
or source rate, R, is less than the channel capacity, that is R<C for reliable
transmission”(Wade, 2000).

Error control coding is a practical method of achieving very low bit error rate after

transmission over a noisy, band limited channel. An overview of error correction
coding can be obtained in the following section.

2 Convolutional Codes

Convolutional coding is a method of channel coding where the check bits are
periodically inserted in a continuous data stream.

2.1 Classifications:

Recursive Encoders — In this encoder, the memory bits gets added up and is
connected with a feedback root.

Non — Recursive Encoders — In this encoder, the memory bits are added up without
any feedback.

Systematic Encoder — A systematic code is one in which the original information bits
can be identified.

Non — Systematic Encoder — In these codes, the information bits cannot be identified
properly (Sankar, 2009).

Figure below shows a simple convolutional encoder. The information bits are passed
into the encoder in small groups of k-bits at a time. The output bits are obtained by
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performing modulo 2 addition (Exclusive OR operation) on the information bits and
also the previous inputs.
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Figure 2: Convolutional Encoder with k=1, n=2 and r=1/2

The code rate R is expressed as R = k/n if the output of the encoder is n bits for every
k input bits. In Figure, the value of k and n are 1 and 2 respectively. The constraint
length of the code K is defined as the number of output bits affected for each
information bit inputted into the encoder. In the above example, the value of K is 3.

All the shift registers are refreshed to a value of O before the encoding operation
begins. For an input sequence of 01011, the encoded output will be 00 11 10 00
01(11T, 2010).

3 Block Codes

Block code is the basic type of channel coding in which it adds redundancy to the
message so that at the receiver end the decoding is done with minimal errors
provided the information rate do not exceed the channel capacity. It contains a set of
fixed-length vectors called code words. The main characteristic of block code unlike
Huffman coding or Convolutional coding is that it is fixed length code words (Wade,
2000).

The block code has a set of fixed length vectors called code words whose length (n)
is the number of elements in the vector. For a code word the elements are selected
from an alphabet of q elements. If the alphabet has two elements 0 and 1, then it is a
binary code and the elements are called bits. If the elements of a code are selected
from an alphabet having g elements and if g>2 then the code is non binary. When q
is a power of 2 i.e. g=2b (b is a positive integer), each of the g-ary element has got an
equivalent binary representation which consists of b bits. Thus a non binary code
having a block length N can be mapped into a binary code having a block length
n=bN.
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For a binary code of length n there are 2" possible code words. From these code
words we select M= 2* code words in order to form a code. Thus we can say that a
block of k information bits is mapped into a code word of length n which is in turn
selected from a set of 2 code words. The resulting block code is referred as an (n, k)
code. The ratio k/n=RC can be defined as the rate of the code. The code rate
parameter RC is simply the weight of the code word i.e. the number of non zero
elements that it contains. Each code word has got its own weight and for a code the
set of all weights constitutes the weight distribution. If all the M code words have
equal weight then the code is considered as a fixed weight code or a constant weight
code (Proakis, 2000).

For a digital communication we mostly use 0 and 1, the addition and multiplication
is as shown below.

0+0=0 0.0=0
0+1=1 0.1=0
1+0=1 1.0=0
1+1=0 11=1

The multiplication and addition shown above are known as modulo-2 addition or
multiplication and we can say that it is almost same as the ordinary arithmetic in
which 2 is equal to 0. The symbols used here i.e. 0 and 1 along with the modulo-2
addition and multiplication can be termed as the field (binary field) of two elements.
This is usually represented as GF (2) (Lin, 1970).

3.1  Hamming codes
Hamming codes have both binary and non binary properties but we consider only the
binary properties. Binary hamming codes comprise a class of codes which follows
the property

(n,k)=(2m-1,2m-1-m)
Where
m= is any positive integer (i.e. if m=3 then we have (7, 4) code).
The parity check matrix H of the hamming code has a particular property. We have
already mentioned in the previous section about the rows and columns of an (n, k)
code, i.e. there are n- k rows and n columns for a (n, k) code. So when we consider a
binary (n, k) hamming code the n= 2m- 1columns consists of every possible binary

vectors with n- k =m elements and except all the zero vectors.

If we want to make a systematic hamming code the parity check matrix H can be
arranged in the form below easily
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H=[-P: Iy_y]
From this the equivalent generator matrix G can also be obtained.

No two columns of the parity check matrix are linearly dependant or otherwise the
two columns will be exactly the same or identical. But we can assume that if m>1,
we can find three columns of the parity check matrix which adds to zero. So the
minimum distance d.;, will be equal to 3 for an (n, k) hamming code. A hamming
code may also be shortened i.e. it can be made as (n-I, k-I). This is done by removing
I rows from the generator matrix or by removing | columns from the parity check
matrix.

Hamming distance is the count of the number of places in which each codeword
differs from the hard decided received vector. The minimum distance dmin of a code
is defined as the minimum Hamming distance between any two codewords of the
code.

For any code with the minimum Hamming distance dmin, the number of errors that
the code can detect is dmin — 1 and the number of errors it can detect is—2— Smin=1

For Hamming codes, the minimum Hamming distance dmin = 3 and therefore, it can
detect 2 errors and correct 1 error.

In order to correct an error pattern, the receiver calculates the product:
§=Hr

where r = ¢ + e is the received vector and e is the error pattern. The value S is called
the syndrome of the error and it is O if e = 0. If the value of S is a non-zero value, it
shows that an error has occurred in the channel and e # 0. In general case, S is a
column vector with N — K rows, corresponding to the N — K parity check equations
of the code and it can take 2¥-% — 1 non-zero values. If a code can correct t errors,
then it has to have enough distinct syndromes to uniquely identify all possible error
patterns of up to t errors (Ambroze, 2007).

The Hamming bound or Sphere packing bound for hard decision decoding is defined
as:

t

N PEREE

i=1

The error correction codes that satisfy this equation with equality are known as
perfect codes.

For Hamming codes, dmin = 3, the number of errors it can correct t:
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Let us consider the (7, 4) Hamming code for example where N =7 and K = 4.

We have,

Since both sides of the sphere packing bound equation are equal, it can be seen
clearly that the Hamming codes are perfect codes and it can correct 1 error.

3.2 Trellis for Linear Block Codes

Let the non zero code word c= (c1... cn) explains the start of ¢ and is denoted as start
(c), the smallest integer for i in the condition ci is hon zero. Similarly let the non zero
code word c= (cl....cn) explains the end of ¢ and is denoted as end (c), the largest
integer for i in the condition ci is non zero. Then the span of ¢ or the support interval
of ¢ can be defined as the interval [start (c), end (c)] where the span or the support
interval of the zero word 0 is an empty interval as [ ]. The span length of ¢ can be
defined by the following equation and it is defined as the cardinality of its span.

L(c) = end (c) — start (c) +1
Where
L (0) =0

The method proposed by Wolf (Wolf, 1978) needs parity check matrix H = (h1 h2...
hn). Here hi where i can be assigned values 1, 2 ...n and is the ith column of the
parity check matrix which has got n-k elements for GF (2). Trellis is an easy way to
represent the 2k code words and it has got n+1 set of nodes and each set has got 2n-k
nodes. Now in order for the ease of explanation let us consider i as the sets where i=
0, 1... n. The nodes in any set will also consist of another parameter j where j=0, 1 ...
2n-k-1 and so we can say that the jth node in the ith set has got an index which is
expressed as (j, i). The nodes are connected with branches in a certain manner and
also uniquely defined by H, we can say that a trellis is formed. The steps for the
procedure are explained below.

e For the set i=0, the branches originate only from the node (0, 0) and there
will be two branches. One branch with weight 0 and the other with weight
1. The branch which has got the weight 0 will enter the node (0, 1). And the
branch with weight which is equal to 1 will only enter the node (b, 1). ‘b’ is
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the transpose of the vector hl is actually the decimal equivalent of the
binary number.

e For any other node (j, i) where i= 0, which has got incoming branches and
also branches are with weight 0 and 1. The destination nodes are determined
using the steps shown below.

» Calculate x, in which x is the binary equivalent of the decimal
number represented by j which is mentioned above.

> Now calculate the binary number y= ti+1@x. Here ti+1 is a binary
number which is shown as the transpose of the vector hi+1.

> Now consider z as the decimal equivalent of y.

»  For the branch with weight 0 the destination node in set i+1 is node
(j, i+1)

» And for the branch with weight 1 the destination node in se i+1 is
node (z, i+1).

e Now repeat the second step again and again fori = 1, 2 ... n-1. By following
this procedure a trellis with more paths than the code words will be
generated. Now remove all the paths (known as expurgation) which do not
end in node (0, n). Thus the remaining will be the 2k unique paths which
indicate all the code words in the block code (Buttner et al., 1998).

3.3 Viterbi decoding using trellis

We already know that each branch of a trellis represents a bit in the valid code word.
So we can say that the most likely path can be found out by comparing each of the
incoming bit or a sample of the received vector (which is called as hard decision and
soft decision respectively) with the branch weights. Assume that there are n received
symbols for a code word and also they are statistically independent. Therefore the
probability of the received sample/bit when compared with the branch weight which
is called as a metric can be explained as shown below.

Z (yi, w(x,i),(z,i+1) ) = log (p(yilw(x, i), (z, i+1)))
Where, w(x,i),(z,i+1) = weight of the branch from the node (x, i) to (z, i+1) and

yi = ith sample/ bit which is received. When we consider the hard decision
implementation the probability of making an error is as shown below.
Z (yi, w(x,i),(z,i+1)) =
log(l—p) yi=wlil(zit+l1)
log(p)  yi-wxi)l(zit+1)

When input samples/bits are being received corresponding cumulative metrics are
being calculated which indicates the most favourable paths. The following rules are
been used when Viterbi algorithm is applied to the trellis for decoding.

e  Assign zero to the cumulative metric CMOO at node (0, 0).

e For every node in set i+1 which has got atleast one incoming branch we
have to calculate one or more metrics. The following computations are to be
done depending on the number of branches entering.

> MO =CMji+Z(yi, 0)
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4

Let us consider the G matrix: G =

Where CMiji is the cumulative metric at node (j, i) and this metric
has to be calculated only if a 0-weight branch enters the node.
» M1=CMji+Z(yi1l)

Where CMiji is the cumulative metric at node (j, i) and this metric

has to be calculated only if a 1-weight branch enters the node.
For the node (j, i+1) the cumulative metric at that node is assigned to CMj
(i+1) = min (MO, M1). When we take the case of two identical metrics one
of them is chosen randomly as the survivor. When only one metric is
calculated for a particular node then the cumulative metrics will assume that
metrics value. This means in this case CMj (i+1) = M0 or CMj (i+1) = M1.
When two branches enter a node in set i+1 one of them will be removed.
The one that is most likely to be removed is the branch that has the larger
metrics.

Repeat the above steps for i= 0, 1... n-1 times. When this is done we should
get only one path which starts from node (0, 0) and ends in (0, n). Thus the
most likely code word can be found out by noting the weights of the
branches in the path obtained by following the above steps (Buttner et al.,

1998).

Result
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For this G matrix, the trellis diagram after encoding is shown below:
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Hard Decision Decoding

The decoding process for each codeword is done as explained in the previous
chapter. The results for hard decision decoding are collated in the tables below.

Received Codeword without errors

No. Transmitted Codeword Received Codeword Decoded Codeword

1 11 1 o0 0O OJ12 1 1.0 O OJ2 1 1 0 0 O
2 o 1 o0 1 1 0oJO 1 0 1 1 O0JO 1 0 1 1 O
3 o o 1 o 1 1J]0 0 1 0 1 10 O 1 O 1 1

Table 1: Received codewords without errors for hard decision decoding
Received Codeword with 1 bit error

No. Transmitted Codeword Received Codeword Decoded Codeword

1 11 1 o0 0 0(1 1. 0 0 O O|1 1 12 0 0 O
2 11 1 o0 0 0(1 0o 1 0O O O|1 1 12 0 0 O
3 11 1 0 o0 Of21 121 0 1 Oj1 1 1 0 o0 O
4 11 1 0 0 0|O 1 1 0 O O|1 1 1 0 0 O
5 0 10 1 1 0{0 O O 1 1 0|0 1 0 1 1 O
6 o 1 0 1 1 0fO0 1 0 0 1 0|0 1 0 1 1 O
7 0o 1 0 1 1 0{0 1 0 1 1 12/]0 1 0 1 1 O
8 0o 1 0 1 1 0|0 1 O 1 0 O|0 1 0 1 1 O
9 o 01 0 1 1/{0 0 1 1 1 120 0 1 0 1 1
10 o o1 0 1 1{0 1 1 0 1 10 O 1 0 1 1
11 o o1 0 1 11 0 1 O 1 10 O 1 O 1 1
12 o 0o 1 o 1 1{0 0 O O 1 10 O 1 0 1 1

Table 2: Received codewords with 1 error for hard decision decoding

Received Codeword with 2 bit errors

No. Transmitted Codeword Received Codeword Decoded Codeword
1 111 0 O0 Oj2 2 0 1 0 Oj1 121 1 0 0 O
2 11 1 0 O O|12 0 O O O O|O0O O O O O O
3 11 1 o0 O OJ21 1 1 0 1 11 1 0 0 1 1
4 o 1 o 11 0|0 O 1 1 1 01 0 1 1 1 O
5 o1 0 1 1 040 1 0 O O O|O O O O O O
6 o 10 1 1 0J1 120 1 1 1(1 1 0 O 1 1
7 o 0 1 01 141 0 1 1 1 1|1 0 1 1 1 O
8 o 0 1 0 1 1/0 1 1 1 1 1|0 1 1 1 0 1
9 0 01 01 112 0 0 O 1 211 1 0 O 1 1
Table 3: Received codewords with 2 errors for hard decision decoding

From the above results, it is clear that the decoder implemented in the MATLAB
software works perfectly for codewords received without any error and for
codewords which have 1 bit error. It cannot correct codewords with errors in two bit
locations. As explained, it proves that the Hamming code corrects 1 bit error in the
received codeword.

4.2

Soft Decision Decoding

Now, for the same G matrix, let us verify the results using soft decision decoding for
the same set of codewords.
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Received Codeword without errors

No. | Transmitted Codeword Received Codeword Decoded Codeword
1 1 1 1 0 0 00528 0765 0664 -026 -119 -076 (1 1 1 0 0 O
2 0 1 0 1 1 0| -106 1281 -1.24 0.557 0.55 08 |0 1 0 1 1 O
3 0 0 1 0 1 1]-106 -106 1449 -091 1063 1502|0 0 1 0 1 1

Table 4: Received codewords without errors for soft decision decoding
Received Codeword with 1 bit error

No. | Transmitted Codeword Received Codeword Decoded Codeword
1 1 1 1 0 0 O0/|0.746 1.22 -074 -108 -093 -137 (1 1 1 0 0 O
2 1 1 1 0 0 01304 -09 1454 -162 -106 -138 |1 1 1 0 0 O
3 1 1 1 0 0 0|0974 038 0861 -157 1266 -128 |1 1 1 0 0 O
4 1 1 1 0 0O 0| -046 0939 0324 -127 -057 -134 |1 1 1 0 0 O
5/0 1 0 1 1 0| -15 -08 -091 1011 0578 -064 |0 1 0 1 1 O
6 0 1 0 1 1 0| -08 0905 -09 -108 0447 -109 |0 1 0 1 1 O
7 0 1 0 1 1 0] -126 0.69 -137 0831 0367 13050 1 O 1 1 O
8 0 1 0 1 1 0| -08 0994 -101 0748 -068 -104 |0 1 0 1 1 O
9 0 0 1 0 1 1|-123 -057 0929 0814 0907 0732|0 0 1 0 1 1
10 0o 0 1 0 1 1| -143 1144 0732 -111 1175 1329|0 0 1 0 1 1
11 0 0 1 0 1 10904 -099 1016 -074 1483 1148|0 O 1 0 1 1
2|0 0 1 0 1 1]-107 -08 -094 -133 1.3 10970 0 1 0 1 1

Table 5: Received codewords with 1 error for soft decision decoding
Received Codeword with 2 bit errors

No. | Transmitted Codeword Received Codeword Decoded Codeword
1 1 1 1 0 0 01043 1163 -092 0702 -105 -105|(1 1 1 0 0 O
2 1 1 1 0 0 00939 -109 -052 -108 -134 -049 |0 0 0 0 0 O
3 1 1 1 0 0 0] 139 0927 0524 -114 091 10871 1 0 0 1 1
4 |0 1 0 1 1 O0f-116 -11 1004 0042 085 -061|0 0 1 0 1 1
5]/0 1 0 1 1 O0f-134 129 -08 -101 -09 -149 (0 0 0 0 0 O
6 0 1 0 1 1 00973 1507 -097 1013 0768 099 |1 1 0 0 1 1
7 0 0 1 0 1 1/{1073 -0.87 0.882 0.925 164 0286 |1 0 1 1 1 O
8 0 0 1 0 1 1{-029 1107 1316 0474 0813 0912|0 1 1 1 o0 1
9 0 0 1 0 1 11103 -066 -068 -121 1081 0701 |1 1 O O 1 1

Table 62: Received codewords with 2 errors for soft decision decoding
5 Conclusion

This project involves in the brief study of error correction coding. Also, a detailed
study of convolutional coding and block codes has been covered with more emphasis
on linear block codes. A software implementation of the encoding and decoding of
the shortened (7, 4) Hamming code has been completed in MATLAB. The code has
been tested with various input codeword inputs to the decoder and the results have
been summarized in the previous chapter. The software implementation includes
both the soft decision decoding and hard decision decoding of the receiver output
and the Viterbi decoding algorithm is applied to get the output of the decoder.

6 Reference

Buttner, W. H., Staphorst, L. & Linde, L. P. (1998) Trellis decoding of linear block codes. In:
Communications and Signal Processing, 1998. COMSIG '98. Proceedings of the 1998 South
African Symposium on, 1998. 171-174.

Lin, S. 1970. An Introduction to Error-Correcting Codes, New Jersey, Prentice Hall.

56




Section 1 — Communications Engineering and Signal Processing

Lin, S. & Costello, D. J. 2004. Error Control Coding, Second Edition, Prentice-Hall, Inc.

Michelson, A. M. & Levesque, A. H. 1985. Error control techniques for digital
communication, Wiley — Interscience.

Proakis, J. 2000. Digital Communications, McGraw-Hill International.

Wade, G. 2000. Coding Techniques: An Introduction to Compression and Error Control,
Palgrave Macmillan.

Wolf, J. 1978. Efficient maximum likelihood decoding of linear block codes using a trellis.
Information Theory, IEEE Transactions on, 24, 76-80.

57



