
31

 Network Architectures and Management

Scalable Distributed-FDPS Algorithm for QoS Provisioning

Chee Kheong Siew, Shuai Peng, Wuqiong Luo, Peng Tang, and Yanting Mo
School of Electrical & Electronic Engineering
Nanyang Technological University, Singapore

ecksiew@ntu.edu.sg
peng0018@e.ntu.edu.sg
luow0002@e.ntu.edu.sg

Abstract: With rapid growth of Internet traffic, much effort has been focused on pos-
sible QoS provisioning mechanisms for different types of services. Many mechanisms,
such as MultiServ and Virtual Time Reference System, have been proposed to provide
QoS guarantees but scalability remains a challenging problem. In this paper, a novel
Distributed-FDPS algorithm is proposed to remove the flow state and its computation
tasks from routers, thereby solving the scalability problem. In this mechanism, the
complexity is pushed to user end-systems, leaving simple priority scheduling at all
routers. We analyse the process of this mechanism to demonstrate its enhancement
and use ns-2 simulation to validate our analytical results. Our ns-2 simulation results
also demonstrate that out-of-order packets are eliminated.

1 Introduction

In the literature on QoS provisioning, two well-known QoS architecture: Integrated Ser-
vice [BCS94] and Differentiated Service [BBC 98] have been proposed and a lot of QoS
provisioning schemes are proposed based on the two architectures. The purpose of the
Integrated Service is to provide per-flow QoS guarantee in the Internet paradigm. How-
ever, the computational complexity of packet scheduling and frequent updating of flow
state limit its scalability. Recognising the problem, Differentiated Service classifies flows
into a limited number of traffic classes and applies priority scheduling to serve the packets
of each class. Therefore, Differentiated Service provides a per-hop per-aggregate service
to flows whose end-to-end characteristic is the convolution of these per-hop per-aggregate
behaviours in its path leading to coarse QoS guarantees. Based on the Differentiated Ser-
vice architecture, a MultiServ mechanism [SE06] has been proposed to provide Service
Curve assurance for per-flow deterministic delay guarantees with Flow-state-dependent
Dynamic Packet Scheduling (FDPS) [SGFE05]. Using packets’ flow states, FDPS pro-
vides fine granularity packet service differentiation within each class and achieves per-flow
end-to-end delay bound independent of the number of intermediate nodes along the path
of the flow. With integrating this algorithm and the Differentiated Service Framework,
the MultiServ mechanism provides a significant enhancement to deterministic QoS guar-
antee. However, it requires the maintenance of flow state at every node on the flow path,

32

INC 2010

which limits its scalability. Also, MultiServ produces a significant amount of out-of-order
packets due to packet service differentiation.

To solve these problems in the MultiServ [SE06], a novel QoS service mechanism is pro-
posed in this paper. It employs a new Distributed-FDPS algorithm which assigns dynamic
packet priority and shapes flows at the traffic source before sending out the packets into
the network. The network nodes on the path only perform simple priority scheduling tasks
according to flow class and packet priority.

In this paper, we firstly present the flow classification and link capacity allocation mecha-
nism in Section 2. The Distributed-FDPS algorithm is presented and analysed in Section
3 and 4. In Section 5, we validate the proposed QoS service mechanism by Network
Simulator ns-2 and finally conclude this paper in Section 6.

2 Flow Classification and Link Capacity Allocation

In this proposed QoS service mechanism, Internet traffic flows are classified at the traf-
fic sources based on the end-to-end scheduling delay budget of each flow [SE06]. This
can provide an end-to-end scheduling delay bond guarantee on a per-class basis. Let
there be M traffic classes in total in this mechanism, M end-to-end scheduling delay
bounds are specified for each class respectively, which can be represented by a vector
D with . Class M and class 1 rep-
resent the highest priority and the lowest priority respectively. Also, class 1 is designated
as the best effort class with unspecified delay bound which ensures that best effort traffic
does not interfere with QoS traffic in higher classes. For any link j in the network, the
capacity of the link j is allocated for the M classes of traffic according to a link capacity
allocation vector which is defined as , where is the fraction
of the capacity allocated to class K and .

This end-to-end scheduling delay based flow classification can minimise the possibility
of bandwidth over-provisioning by providing service differentiation between flows with
different delay requirements. Furthermore, the unused capacity in the higher traffic class
will be rolled over to the next lower class until it reaches the best effort class. Thus, the
proposed mechanism creates M-1 number of QoS layers above best effort layer. QoS layers
above the best effort layer are reserved for transmitting respective higher class traffic only
when needed. Once the higher class traffic finished transmitting, capacities allocated to
these layers would be released to the best effort layer. Moreover, this structure provides
customers the option to buy different QoS services over specific periods according to their
needs.

33

 Network Architectures and Management

3 Distributed-FDPS Algorithm

3.1 The Enhanced Dual Token Bucket Structure

Similar to FDPS algorithm, Distributed-FDPS also implements packet priority assignment
on per-flow basis. However, it deploys an Enhanced Dual Token Bucket structure only
at the traffic source instead of at every network node on the path. Every QoS traffic flow
will have its own Enhanced Dual Token Bucket at the sender. As shown in Figure 1, this
Enhanced Dual Token Bucket consists of two token buckets. The priority bucket is used
for priority assignment and the rate control bucket regulates the output traffic to prevent
the packets received at the destination from suffering out-of-order packet problem.

Figure 1: Structure of Enhanced Dual Token Bucket

3.1.1 Priority Bucket

The priority bucket does not regulate the traffic but assigns the priority of a packet accord-
ing to its state. Flow parameters of any flow are , which denote flow bustiness,
reserve rate and scheduling delay bond respectively. There are layers of tokens in a pri-
ority bucket and the width of the bucket is . From top to bottom, each layer represent
packet priority of to 1 respectively.

When a new packet of flow i arrives, one token is deducted for every byte. Its packet
priority will be decided by the layer from which it takes the token for its last byte. For
example, if the packet takes the token from layer 3 for its last byte, priority 3 will be
assigned to the packet.

The above assignment process will be performed only when there are enough tokens in the
bucket for every byte of the newly arrived packet. However, if tokens are not enough at the
time, this packet will be assigned to priority 0, which indicates the packet is considered as
non-conformant and will be treated the same as best effort traffic. The pseudo-code for the
packet priority algorithm is given below.

34

INC 2010

Packet Priority Algorithm:

Consider the priority bucket of flow i with refilling rate , as the highest priority and 1

as the lowest priority of conformant packets, and 0 as priority of non-conformant packets.
Upon the arrival of packet of flow i, denoted by , a corresponding dynamic priority

is computed and assigned to .

1) Initialise: at system start time

;
; (priority bucket width)

; (time of last priority assignment)

2) Upon the arrival of a new packet

a) Refill the bucket

;

b) Assign the packet priority

If

;
;

;

Else

;

Endif

c) Forward packet to rate control bucket

3.1.2 Rate Control Bucket

During the packet priority assignment, packets might be assigned with a higher priority
compared to the priority of the earlier packets if the token refilling rate is high enough.
In that case, the latter packets with higher priorities might be scheduled and transmitted
before the earlier packet. As a result, packets received at destination will be out-of-order.
The process is shown in Figure 2.

The rate control bucket is implemented to solve that problem. The bucket depth is set to
the largest packet size in flow i. The bucket refilling rate is set by admission
control function that could be implemented possibly by means of a Bandwidth Broker as
in [SE06]. Note that in a real network, the end system should not be fully trusted. So the
rate control bucket might also need to be implemented at the ingress node to ensure the
traffic conformity.

35

 Network Architectures and Management

Pkt1Pkt2

Packet queue

After time T, when token bucket was refilled
Scheduler

Pkt3

Pkt2Pkt3

Packet queue

Pkt4

Packet 1

Priority=4

Packet 2

Priority=7

Pkt2Pkt1...

Output queue

Figure 2: Out-of-order Packet Problem

3.2 Packet Scheduling

The scheduling process in MultiServ mechanism has two levels of granularity: coarse and
fine. At coarse granularity, queue from the highest priority class with backlogged packets
is always selected for service first. At fine granularity, packets belonging to a class are
scheduled by the FDPS algorithm [SGFE05] which provides Service Curves assurance
according to its traffic specifications and QoS requirements.

However, it is not necessary to implement the FDPS algorithm at every network node along
the path of the flow because the priority of a packet remains unchanged. After recognising
that, the Distributed-FDPS mechanism proposed in this paper assigns the dynamic priority
only at the traffic source via the implementation of the Enhanced Dual Token Bucket
structure as mentioned above.

The network nodes on the path will implement simple priority scheduling algorithm based
on the traffic class and packet priority. Therefore, the scheduling mechanism still has two
levels of granularity. At coarse granularity, a total of M schedulers are needed for these M

classes of traffic as shown in Figure 3 and only one scheduler is processing its packets at
the output link at any time. New packets arriving at a node will be passed to the respective
scheduler according to its flow classification. Then, the packets in the scheduler will be
served according to packet priority. At both level of granularity, the packets with higher
priority (combination of traffic class and packet priority) will always be served first.

4 Analysis of Proposed Mechanism

4.1 Service Curve Assurance

In network calculus [Cru91] [Cru91] [LBT01], if the cumulative arrival process be
the number of bits that arrive at a system during the interval , then the minimal arrival
curve is defined by

36

INC 2010

Class M

Class M-1

Class 1 (Best Effort)

Class K

Input Buffer

Class K
Priority L
Packet

Service

A set of priority schedulers

Priority 1

Priority Q

Priority Q-1

Priority L

Service

A set of priority queues

Figure 3: Scheduling Process at the Router

The function specifies the maximum burstiness for any interval size t. Any func-
tion that satisfies , for all , is called a traffic envelope or an arrival
curve of . Let be the number of bits that depart the system during the inter-
val , then the system is said to provide a service curve if the following holds

For a given flow with arrival curve and delay bound . On accepting the flow, the
network must provide a service curve that satisfies, ,
which will guarantee scheduling delay no greater than .

Theorem 1: For a flow with arrival curve and delay bound , the Distributed-FDPS
algorithm will provide a service curve that satisfies, .

Proof: The proof is omitted due to space limitations and we demonstrate the delay bound
via ns-2 simulations.

4.2 Router Stateless

The proposed Distributed-FDPS mechanism uses a core stateless algorithm by gracefully
eliminating per-flow router state management, removing per-flow state from core routers
in [SE06] and pushing the complexity to end-systems.

Another interesting stateless architecture called Virtual Time Reference System (VTRS)
[DZYL04] employs packet virtual time stamps to indicate the packet state. As packets
traverse through each core router, virtual time stamp carried in each packet is retrieved.
Together with some fixed parameters, packet virtual time stamps are computed and up-

37

 Network Architectures and Management

dated at each core router. However, since computation is needed for each arriving packet
at each core router, the issue of scalability for large number of flows needs to be solved.

For the Distributed-FDPS mechanism, all the priority assignment process has been taken
care of at the traffic source. Both edge routers and core routers are relieved from complex
computation except for simple priority scheduling. Therefore, the Distributed-FDPS algo-
rithm is not only core stateless but simplifies the scheduling process at all routers thereby
addressing the issue of scalability successfully.

Furthermore, for virtual time reference system, edge routers need to maintain the per-
flow state. They also need to write packet states into the packet virtual time stamps when
packets are injected into the network. Moreover, edge routers need to ensure that the
packets of a flow will never be injected into the network at a rate exceeding the flow’s
reserved rate [DZYL04]. Distributed-FDPS mechanism let the traffic source maintain
the per-flow state and assign the priority of a packet before transmitting it. The main
complexity of dynamic priority assignment for a packet occurs only once at the traffic
source. The edge routers are relieved from performing QoS control functions. Thus the
complexity has been pushed to the traffic source instead of the edge and core routers.

4.3 Movable Boundary

Another advantage of the proposed architecture is that the link bandwidth is allocated
according to the allocation vector, which can be easily changed by the Bandwidth Broker
to maximise the link usage. If the number of users that require a specific QoS service
is higher than the capacity of the corresponding class, the boundary of that class can be
moved to meet this requirement. For example, suppose there is a link with the following
allocation vector, = for class respectively. If the demanded
capacity for class 4 is lower than the allocated capacity, the allocation factor for class 4 can
be simply decreased to release the unused capacity to other classes with higher demand.
This feature might help the ISP maximise its profit by adjusting the allocation vector to
achieve minimum unused capacity in each class.

5 Simulation

5.1 Topology

In this section, we present a test suite to validate the proposed QoS mechanism by using
the Network Simulator ns-2 [M 00].

As shown in Figure 4, two routers are created in this test suite. Congestion is more likely
to occur at the bottleneck link between the two routers, which has 10M of bandwidth and
5ms of propagation delay.

Test parameters are shown in Table 1 and Table 2 below. Every simulation lasts 30 seconds.

38

INC 2010

Figure 4: Topology of Test Network

Parameter Video Traffic UDP Traffic
Reserved Rate 500 kbps 800 kbps

Burstiness 40000 bits -
Average Packet Size 4000 bits 8000 bits

Table 1: Flow Parameters

5.2 Result Analysis

In the first experiment, we test the mechanism without the rate control bucket to see if there
is any out-of-order packet. We also record the actual scheduling delay for comparison.

As shown in Figure 5, out-of-order packets recur for about every 50 packets in each class
if the rate control bucket is not implemented. However, the maximum scheduling delays
are about 16ms, 33ms and 42ms for Class 4, Class 3 and Class 2 respectively, which means
that the delay bound for every class is upheld even with out-of-order packet problem.

In the second experiment, we turn on the rate control bucket and use the same network
topology and traffic parameters. Figure 6 shows that, with the rate control bucket imple-
mented, the out-of-order packet problem is eliminated, the actual scheduling delays for
each class are reduced significantly, which are about 4ms, 26ms and 34ms for Class 4,
Class 3 and Class 2 respectively.

Through the first test suite, we notice that the actual rate used by reserved flows account for
less than 50% of the link capacity. In order to increase the link utilisation, the allocation

Parameter Class 4 Class 3 Class 2
Allocation Factor 0.3 0.3 0.3

Scheduling Delay Bound 20 ms 40 ms 80 ms
Priority Bucket Depth 40000 bits 40000 bits 40000 bits
Bucket Token Rate 500 kbps 500 kbps 500 kbps

Rate Control Bucket Depth 4000 bits 4000 bits 4000 bits
Bucket Token Rate 2 Mbps 1 Mbps 0.5 Mbps

Table 2: Parameters for Distributed-FDPS Algorithm

39

 Network Architectures and Management

Figure 5: Out-of-order Analysis and Delay Distribution without Rate Control Bucket

Figure 6: Out-of-order Analysis and Delay Distribution with Rate Control Bucket

vector is changed to , the average packet size for UDP traffic is changed
to 3600 bits and there are 2, 4, 5, 1 flows for Class 4, 3, 2 and best effort class respectively.
Other parameters remain unchanged and each simulation lasts for 30 seconds in the second
test suite.

The simulation results of actual scheduling delay without and with rate control bucket im-
plemented are shown in Figure 7. While Figures 7(a) and 7(b) demonstrate that scheduling
delay bounds are upheld in both cases, most packets are delivered well below their delay
bounds and narrower delay spread when individual source rate control bucket is imple-
mented.

6 Conclusion

Although the MultiServ can effectively reduce the computational complexity when pro-
viding fine granularity scheduling, the scheduling tasks inside routers are still very heavy.
This is because routers have to maintain flow state information, which also happened in

40

INC 2010

Figure 7: Scheduling Delay Analysis For Second Test Suite

the edge routers of Virtual Time Stamp System. Another serious problem of MultiServ
mechanism is the out-of-order packet issue. To solve these problems, we proposed a novel
Distributed-FDPS algorithm that pushes the packet priority assignment to the traffic source
and remove flow state from all routers. Furthermore, rate control bucket is added to solve
the out-of-order packet problem. We validated the proposed mechanism with ns-2 simula-
tor to show that the delay bounds are upheld and the out-of-order packet problem is solved.
In conclusion, the proposed mechanism can effectively simplify the router scheduling task
and be integrated with the current best-effort service gracefully to provide deterministic
QoS guarantees.

References

[BBC 98] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. RFC2475: An
Architecture for Differentiated Service. RFC Editor United States, 1998.

[BCS94] R. Braden, D. Clark, and S. Shenker. RFC1633: Integrated Services in the Internet
Architecture: an Overview. RFC Editor United States, 1994.

[Cru91] R.L. Cruz. A calculus for network delay, part I: Network elements in isolation. IEEE
transactions on information theory, 37(1):114–131, 1991.

[DZYL04] Z. Duan, Zhang. ZL, Hou. YT, and Gao. L. A core stateless bandwidth broker archi-
tecture for scalable support of guaranteed services. IEEE Transactions on Parallel and
Distributed Systems, pages 167–182, 2004.

[LBT01] J.Y. Le Boudec and P. Thiran. Network calculus: a theory of deterministic queuing
systems for the internet. Springer Verlag, 2001.

[M 00] S. McCanne et al. Network simulator ns-2, 2000.

[SE06] C.K. Siew and M.H. Er. Multiservice provisioning mechanism with service curves as-
surance for per-class scheduling delay guarantees. IEE Proceedings-Communications,
153:846, 2006.

[SGFE05] C.K. Siew, Feng. G, Long. F, and M.H. Er. Congestion control based on flow-
state-dependent dynamic priority scheduling. IEE Proceedings-Communications,
152(5):548–558, 2005.

