
Chapter 4 – Applications and Impacts

159

Model Driven Engineering in Systems Integration

M.Minich1, B.Harriehausen-Mühlbauer2 and C.Wentzel2

1Centre for Security, Communications and Network Research,
Plymouth University, Plymouth, UK

2Department of Computer Science, University of Applied Sciences Darmstadt, 
Darmstadt, Germany

e-mail: info@cscan.org

Abstract

Software development in systems integration projects is still reliant on craftsmanship of highly 
skilled workers. To make such projects more profitable, an industrialized production, 
characterized by high efficiency, quality, and automation seems inevitable. While first 
milestones of software industrialization have recently been achieved, it is questionable if these 
can be applied to the field of systems integration as well. Besides specialization, 
standardization and systematic reuse, automation represents the final and most sophisticated 
key concept of industrialization, represented by Model Driven Engineering (MDE). The 
present work discusses the most prominent MDE approaches, while considering the 
particularities of systems integration. It identifies Generative Programming as being most 
suitable and integrates it into previous works on Software Product Lines and Component 
Based Development in Systems Integration. 

Keywords

Software Industrialization, Automation, Systems Integration, Software Product 
Lines, Generative Programming, Model Driven Engineering

1. Introduction

Compared to other high tech industries, software engineering shows only marginal 
improvement in terms of productivity, quality, and cost efficiency. It is still 
characterised by a high degree of craftsmanship to develop software from scratch 
with labour-intensive methods. By applying industrial methods and thus enhancing 
an organization’s productivity, we possibly can increase quality and product 
complexity, and at the same time reduce cost and production time. Key industrial 
methods can be defined as specialization, standardization, systematic reuse, and 
automation (Encyclopaedia 2005). In the field of software engineering, Software 
Product Lines (SPL) represent specialization as the first and probably most important 
industrial principle. By concentrating on a limited scope, production assets can be 
much more power- and useful, which is especially important for standardization and 
systematic reuse as the second industrial principle. Both are available within 
Component Based Development (CBD), an approach to exchange and systematically 
reuse software artefacts in a standardized fashion. The final aspect of 
industrialization, automation, can be achieved with Model Driven Engineering 
(MDE). Using models as a description of software and utilizing domain specific 
languages, the degree of freedom and possible contexts available to a software 



Proceedings of the Ninth International Network Conference (INC2012)

160

developer is reduced. Without such limitation it would hardly be possible to provide 
formal model transformation engines and code generators, as they would have to 
cover an indefinite number of possible implementations for e.g. a single business 
concept.

In today’s business world, IT faces high demands in quickly adopting to new 
requirements. As legacy systems often do not offer the flexibility to do so, new 
systems are implemented which need to interact with the existing IT landscape. This 
situation inevitably leads to systems integration efforts, joining the different 
subsystems into a cohesive whole, in order to provide new business functionality or 
data access (Fischer, 1999; Leser and Naumann, 2007). Systems integration deals 
with the steps required to move an IT system from a given degree of integration to a 
higher one by merging distinct entities into a cohesive whole, or integrating them 
into already existing systems (Riehm, 1997; Fischer, 1999).

Although several literature on the different industrialization concepts and their 
practical implementation is available (Clements and Northrop, 2007; Herzum and 
Sims, 2000; Stahl and Bettin, 2007), it seems questionable if they are suitable for all 
areas of software development, such as systems integration with its high 
heterogeneity or single-use development projects. The present work therefore takes 
the position of a large systems integrator, who provides enterprise application 
integration (EAI) services and solutions to his customers. Research was done with 
support of a German company active in the field, providing a variety of integration 
solutions to its customers. The objective was to identify different possibilities for 
model driven engineering while considering the particularities of the company: 
Taking into account that such providers are usually involved in different industries; a 
high heterogeneity must be assumed. This anticipates the formation of standards and 
is reinforced by the fact that integrated systems are often connected on a peer-to-peer 
basis with each other. Due to high acquisition cost, they are also not replaced 
frequently (Hasselbring, 2000).

It must be assumed, that for such heterogeneous, volatile, and customer specific 
projects, conventional industrialization approaches are hardly feasible. For Software 
Product Lines and Component Based Development, we have developed a 
methodology in our previous works about an Organizational Approach for 
Industrialized Systems Integration (Minich et al., 2010), and Component Based 
Development in Systems Integration (Minich et al., 2011). The present work deals 
with the implementation of the third and final industrial key principle, i.e. 
automating development with the help of Model Driven Engineering. With the given 
situation and existing MDE concepts, it must be assumed that such intent will never 
break even, as no considerable economies of scale or scope exist to justify expenses 
for domain specific language, transformer, and generator development. To overcome 
this challenge, either reusability or cost efficiency must significantly be increased.

2. Automating Software Development

In automated software development, software engineers specify what to do, but not 
how. It is up to model transformers or code generators to interpret descriptive models 
of the intended system and create either intermediate models to be further refined, or 



Chapter 4 – Applications and Impacts

161

source code. Different approaches exist or are currently being researched. The 
following are the most discussed ones in literature:

 Model Driven Architecture (MDA): An initiative from the Object Management 
Group (OMG), MDA defines a model driven development approach which is 
based on a separation of functional and technical concerns (Object Management 
Group, 2003). It therefore specifies UML as its modelling language, and the Meta 
Object Facility as its describing model (meta model) for all specification models. 
These are the Computation Independent Model (CIM), the Platform Independent 
Model (PIM), the Platform Specific Model (PSM), and the Platform Specific 
Implementation (PSI). The CIM describes the required systems from hard- and 
software independent point of view. It can be represented as a high level UML 
class diagram containing the key concepts and terms of the respective domain. 
The CIM is further elaborated with conceptual information and transforms into a 
PIM, describing the required system on a formal and precise level, containing 
elements like entities, attributes, or data types (Petrasch and Meimberg, 2006). 
The PIM is the first model which may automatically be transformed by 
transformation engines or code generators and thus needs to be as precise as 
possible (Singh and Sood, 2009). Subsequently, it is transformed into the PSM, 
formally describing the application for the specified platform. Several iterations 
are possible, until the final result is the Platform Specific Implementation, i.e. an 
executable artefact reflecting the requirements previously depicted in the CIM.

 Generative Programming (GP): Based on the work of Czarnecki and Eisenecker 
(Czarnecki, 2005), Generative Programming aims at automating the development 
of a family member within a Software Product Line. It therefore defines a 
problem space expressed by a Domain Specific Language and the solution space 
consisting of “implementation-oriented abstractions, which can be instantiated to 
create implementations of the specifications expressed using the domain-specific 
abstractions from the problem space” (Czarnecki, 2005). The mapping between 
both contains the configuration knowledge such as illegal feature combinations, 
default settings, default dependencies, construction rules and grammar, or 
optimizations. These mapping rules are implemented within a generator returning 
the solution space, which may either be an intermediate model or executable 
program code. 

 Software Factories (SF): An approach introduced at Microsoft by Greenfield and 
Short (Greenfield et al., 2004) which, similar to GP, utilizes Software Product 
Lines and Component Based Development, along with a highly customized IDE. 
It is based on Software Factory Schemes, which describe certain viewpoints 
required to develop a system. Such viewpoints express concerns regarding the 
business logic and workflows, data model and data messaging, application 
architecture, and technology, and may be present on all levels of abstraction. All 
together the schemes with their viewpoints exactly define what needs to be done 
and how to manufacture a family member. In order to provide a customized IDE, 
the schema with its viewpoints is represented by a Software Factory Template. 
The template can be loaded into an IDE, providing wizards, patterns, 
frameworks, templates, domain specific languages, and editors. Complete 
definitions of domain specific languages furthermore allow (semi-) automatic 
model to model transformations and code generation.



Proceedings of the Ninth International Network Conference (INC2012)

162

Compared to MDA, Generative Programming has a domain oriented focus which is 
usually found in Software Product Lines. MDA in turn does not necessarily rely on a 
clearly delimited problem domain. GP furthermore allows to create DSL, generator, 
and other artefacts required “on the fly” during regular software development. This 
reduces the necessity of high upfront investments and leads to artefacts tailored 
exactly to the needs of the implementing company. In contrast to GP and MDA, 
Software Factories are currently based on proprietary IDEs and modelling 
frameworks from Microsoft. Furthermore, most of the infrastructure needs to be in 
place before software development may start, leading to high upfront investments. 
Comparing MDE with previous advances of software development, such as 
compilation technology or 3rd generation languages, further advancing the level of 
abstraction and thus increasing automation seems obvious.

However, even after almost 30 years of research in Computer Aided Software 
Engineering (CASE) and similar approaches as the ones introduced above, this has 
not yet happened. In an article on automation and model based software engineering 
(Selic, 2008), Bran Selic names some of the most significant reasons for the lack of 
acceptance of automated software development in the industry. Foremost, the biggest 
advantage of fourth generation programming languages (i.e. Domain Specific 
Languages) is also their biggest drawback: A limited scope makes them very 
powerful, but also reduces the economies of scale for any infrastructure development 
such as IDEs, transformation engines, or code generators. Development tools are 
either built in-house and commercially hardly break even, or by a very small number 
of vendors, leading to a vendor lock-in. In addition, software developers sufficiently 
skilled in a particular language or toolset are highly specialized and not easily 
available on the market. However, even with such available, there are still some 
more pragmatic issues such as usability of large graphical models, interoperability 
between tools, or current development culture (Selic, 2008).

In conclusion it can be said that with Model Driven Architecture, Generative 
Programming, and Software Factories, there are some interesting and promising 
approaches being developed. However, their way into industrial practice is still prone 
to “a great deal of improvisation, invention, and experimentation and still carries 
with significant risk” (Selic, 2008). Major improvements in standardization and 
availability of tools must be made to further advance model driven engineering 
beyond academia. The authors therefore do not believe that for the time being a full-
fledged model driven engineering approach in an industrial setting is feasible. This 
especially applies to the field of systems integration with particularities like one-off 
development, high heterogeneity, and multiple systems to be integrated. These and 
their implications on automated software development will be discussed in the 
following. 

3. Characteristics of Systems Integration

Systems Integration comes with certain particularities, distinguishing it from 
conventional or single-system software development. It has to challenge a 
multiplicity of technologies, business processes, and other aspects, such as regulatory 
requirements. Considering the fact that most system integrators are active in multiple 
industries with multiple customers, chances that one project is similar to another are 



Chapter 4 – Applications and Impacts

163

extremely small. However, the industrialization of software development requires 
some sort of specialization, standardization, and automation to be beneficial. While 
specialization can be found in Software Product Lines and standardization in 
Component Based Development, automation requires an approach similar to the ones 
introduced in chapter 2.

As with every new technology, implementation cost are associated with model 
driven engineering. First, one has to define a domain specific language in which the 
different applications of a product line will be modelled in. For systems integration, 
such a DSL needs to represent not only the system that is to be modelled, but also 
parts of those systems the new one is to be integrated with. Subsequently, respective 
model transformation engines and code generators must be developed, a task far 
from being trivial. Depending on the type of integration, such generators need to 
generate code for different platforms. Once all this is in place, automated software 
development may begin. Preparations therefore require a certain effort to be 
completed and must be considered from a cost benefit analysis. However, in the 
context of systems integration, implementation costs seem contradictory to model 
driven engineering. With the given situation and existing MDE concepts, it must be 
assumed that such intent will never break even, as no considerable economies of 
scale or scope exist to justify expenses for DSL, transformation engine and code 
generator, and IDE development. Furthermore, one has to consider shortcomings of 
current tools and development culture as introduced at the end of chapter 2. To 
overcome these challenges, either reusability or cost efficiency must significantly be 
increased, as well as suitable tools need to be available.

4. Combining MDE with Industrial Systems Integration

In our previous work (Minich et al., 2010), we presented an organizational model for 
industrialized systems integration, which was done as a first step towards 
industrialization. It assumes that integration of different IT systems mostly occurs 
within the boundaries of a certain business domain, as the automotive industry, for 
instance. Herein, a large number of concepts, such as the logical entities car, 
supplier, or customer, remain the same for all applications and product lines. The 
model therefore consolidates similar activities of different product lines within a 
super ordinate layer, i.e. the Business Domain Layer. The advantage of this 
consolidation lies in a simplified integration of products from the underlying product 
lines, and a more efficient implementation approach due to the consolidation of 
redundant activities. In a subsequent step, we adapted the Business Component 
Model by Herzum and Sims (Herzum and Sims, 2000) as the second key principle of 
industrialization (Minich et al., 2011). Herein we have shown how the different 
aspects of the model can be adapted to systems integration by matching them to an 
integration meta model. In addition we have shown where the required process steps 
of the Business Component Model are best situated within our Organizational Model 
for Industrialized Systems Integration.

This leaves us with automation as the final step, represented by model driven 
engineering. Given the MDE approaches introduced above, we chose Generative 
Programming as the basis for our work due to its focus on automating the 
development of a family member within a software product line (Czarnecki, 2005) 



Proceedings of the Ninth International Network Conference (INC2012)

164

and its ability to be implemented concurrently with the actual product being 
developed. Development within a product line allows for specialization as one of the 
key principles of industrialization. Advancing the approach while developing an 
actual product removes the necessity of high upfront investments. In the following 
sections we will show where in our previously developed organizational model the 
GP processes are best situated and how they relate to the Business Component 
Model.

4.1. Development Processes of Generative Programming

Generative programming (GP) includes the following eight main development 
processes (Czarnecki and Eisenecker, 2000) to define scope and functionality, 
infrastructure and core assets, as well as automation artefacts:

1. Domain Scoping identifies the domain of interest, stakeholders, goals, and 
defines the scope of the GP approach. It is influenced by e.g. the stability and 
maturity of potential solutions, available resources to implement them, and the 
potential for reuse during production (Czarnecki and Eisenecker, 2000).

2. Feature & concept modelling identifies the distinguishable characteristics of a 
system within a certain domain and models them within a feature model 
(Czarnecki and Eisenecker, 2000).

3. Common architecture & component definition depends on the previously 
developed feature model. Each identified area of functionality requires one or 
more components, whereas their component model, interaction, type, and 
distribution will depend on the architecture chosen for the system (Czarnecki and 
Eisenecker, 2000).

4. Domain Specific Language design specifies a language by defining its syntax 
and semantics. This may be done in different ways, ranging from simple 
translational semantics (i.e. defining a translation scheme to an implementation 
language) to complex axiomatic semantics (i.e. defining a mathematical theory 
for proving programs written in a given programming language) (Czarnecki and 
Eisenecker, 2000).

5. Specification of configuration knowledge defines how the problem space will 
be transformed into the solution space by utilizing the features and concepts 
identified above. It shields the developer from knowing all components and 
features by specifying illegal combinations, default settings, dependencies, or 
construction rules.

6. Architecture & component implementation implements the architecture and 
components identified above. The technology in which both are implemented 
depends on the scope of the domain.

7. Domain Specific Language implementation takes the DSL specification from 
the DSL design process and derives a concrete implementation. Here GP 
differentiates between separate DSLs (e.g. SQL or TEX), embedded DSLs (e.g. 
template meta programming in C++), and modularly composable DSLs (e.g. 
embedded SQL, or aspect oriented programming) (Czarnecki and Eisenecker, 
2000).

8. Configuration knowledge implementation in generators allows advancing the 
problem specified with the help of a Domain Specific Language into executable 
program code. To do so, generators apply validation of the input specification, 



Chapter 4 – Applications and Impacts

165

complete a given specification with default settings, perform optimizations, and 
eventually generate the implementation. Generators may be implemented as 
stand-alone programs, using built-in meta programming capabilities of a 
programming language, or by using a predefined generator infrastructure 
(Czarnecki and Eisenecker, 2000).

Comparing the eight process steps with the concepts of Software Product Line and 
Component Based Development, Generative Programming can be clearly subdivided 
into the industrial key concepts of specialization (steps 1 and 2), standardization 
(steps 3, 5 and 6), and automation (steps 4, 7, and 8).

4.2. GP and the Organizational Model for Industrialized Systems Integration

Software Product Lines and Component Based Development already cover the large 
parts of the GP processes. In the following we will therefore describe how our 
previously developed approach for Software Product Lines in systems integration 
needs to be adjusted to incorporate the requirements of Generative Programming.

4.2.1. The Business Domain Layer

The Business Domain Layer was developed to align domain wide functionality and 
utilize economies of scope due to similar concepts and core assets among different 
product lines of a given domain. It therefore contains the Software Product Line 
processes domain analysis & portfolio definition, architecture development & 
roadmap definition, and core asset development.

As to Generative Programming, the above processes already cover the GP processes 
1 and 2, such as development of a domain or feature model (Minich et al., 2010). 
Furthermore, the activities of GP processes 3 and 4 are already enclosed in 
Architecture Development & Roadmap Definition, and Core Asset Development. 
However, as the Business Domain Layer only features concepts suitable for more 
than one product line, we have to differentiate between global (business domain 
wide) and local (product line specific) aspects of GP. This means that there will for 
instance be DSL design activities in both, the Business Domain and the Software 
Product Line Layer. In the former, the overall structure and domain wide syntax and 
semantics are defined, whereas the latter covers product line specific syntax and 
semantics, such as “bill of materials” for a shop floor system produced in a particular 
software product line. The distribution is illustrated in Figure . Combining the 
activities introduced in (Minich et al., 2010) with the respective ones from 
Generative Programming, the Business Domain Layer in its final stage consists of 
the following core processes:

 Business Domain Analysis explores the typical IT landscape of the business 
domain in scope and identifies areas of expertise required to develop and provide 
the products and services under consideration. Similar to software product lines 
but on a higher level, it identifies recurring problems and known solutions.

 Portfolio Definition & Domain Scoping evaluates the information from the 
domain model and develops a product portfolio for the particular business 
segment. The portfolio covers typical applications and solutions for the most 



Proceedings of the Ninth International Network Conference (INC2012)

166

important business services of the segment and identifies the portfolio elements 
and resulting software product lines.

 Architecture & Feature Definition. Once the scope is defined, a basic product 
line and integration architecture, a component framework, and an overall feature 
model, applicable for all product lines are developed. As different product lines 
have different functional and technical requirements, this architecture may also 
exist in an abstract form and be instantiated within the product line subsequently. 
This approach allows for a later integration of products from different product 
lines of the same business domain.

 Core Asset Development develops reusable assets, applicable to all or many 
software product lines within the business segment. Such joint core assets may 
for instance be development tools and processes, or joint software development 
patterns. Core Asset Development may also include the production of reusable 
software components equal to each product line. To additionally support 
Generative Programming, Core Asset Development now also contains the 
definition of an abstract syntax for a domain wide specification language. This 
DSL may then be extended within the underlying software product lines in order 
to support more specific concepts.

4.2.2. The Software Product Line Layer

The Software Product Line Layer consists of several software product lines 
identified in business domain analysis and portfolio definition processes of the 
business domain layer (Minich et al., 2010). The most obvious variance to a 
conventional software product line is the lack of the business domain analysis 
process, and a simplified domain requirements engineering process. These functions 
are now incorporated in the business domain layer and provide their findings to the 
subsequent product lines. All other processes remain the same but must adhere to the 
specifications and utilize the provided core assets from the business domain layer.

As to Generative Programming, we can find all but the first development process 
within the Software Product Line Layer. However, due to the separation of domain 
wide and product line specific concerns, the GP processes 2 to 4 only handle product 
line related concerns. A systems integrator’s feature model for the automotive 
industry may for instance define the entity car with several features, such as model, 
engine, transmission, colour, price, owner, and so on. These features exist in all 
products of the underlying product lines. A product line for shop floor systems may 
however extend this feature model by adding features like electronic control unit 
(ECU) type, brake type, or parts list. As this has no implication on the functionality 
of the car itself or the customer, these features are not necessary to be known in other 
product lines. A financial system does not need to know what type of ECU is built 
into a car, but it does need to know the price and the owner of the car. This same 
principle applies to Common Architecture & Component Definition and Domain 
Specific Language Design. GP processes 5 to 5 are carried out in the software 
product lines only. Combining the activities introduced in our Organizational Model 
for Industrialized Systems Integration with the respective ones from Generative 
Programming, the Product Line Layer in its final stage consists of the following core 
processes:



Chapter 4 – Applications and Impacts

167

 Requirements Engineering & Feature Modelling defines the scope of the 
intended software product line by identifying its products and documenting their 
commonalities and variability within a feature model. The process has to conform 
to the Portfolio Definition & Domain Scoping artefacts of the superior business 
domain layer, but may extend them with product line specific features.

 Architecture, Component & DSL Design transforms the scope defined in 
requirements engineering into a technical architecture and specification for the 
product line and its products. The architecture decomposes a software system into 
common and variable functional parts, and specifies the configuration knowledge 
in terms of component dependencies, default configurations, construction rules, 
illegal combinations, and rules for their implementation. Each identified area of 
functionality requires one or more components with an architecture specific 
component model, interaction scheme, and distribution mechanism. All 
programming artefacts are finally described within a Domain Specific Language. 
The process’ activities must adhere to the specifications from the business 
domain layer, but may extend it with product line specific features.

 Core Asset Development provides the design and the implementation of 
reusable software assets (Pohl et al., 2005). This implementation includes the 
overall framework, software components, executable code, and other product line 
assets, such as development processes and tools. In terms of Generative 
Programming, core asset development is also responsible for the implementation 
of the DSL as specified in the previous process. In a later and more mature stage, 
Core Asset Development will implement the configuration knowledge within 
generators to advance the system specified with the help of a DSL into 
intermediate models or executable code. As this can be extremely complex, we 
suggest postponing this activity until reasonable experience with the DSL and the 
product lines has been gathered.

 Domain Testing develops test cases and inspects all core assets and their 
interactions against the requirements and contexts defined by the product line 
architecture. Domain testing also includes validation of non-software core assets, 
such as business processes, product line architecture or development policies.

 Software Integration in the context of product line development occurs during 
pre-integration of several software components. They form blocks of 
functionality common to all products and contexts of a product line. Furthermore, 
the integration process ensures the interoperability of all reusable assets and 
provides the required integration mechanisms.



Proceedings of the Ninth International Network Conference (INC2012)

168

Business Domain A

Product Line 1 Product Line 2 Product Line n

Product C

Product D

Product B

Product A
II0I0II0II0I0II0

II0I0II0II0I0II0

II0I0II0II0I0II0

II0I0II0II0I0II0

P
ro

d
u

c
t 

D
e

s
ig

n

P
ro

d
u

c
t 

&
 D

o
m

a
in

 T
e

s
ti

n
g

Im
p

le
m

e
n

ta
ti

o
n

C
o

m
p

o
n

e
n

t 
T

e
s

ti
n

g

R
e

q
u

ir
e

m
e

n
ts

 E
n

g
in

e
e

ri
n

g

La
ye

r 3

Product C

Product D

Product B

Product A
II0I0II0II0I0II0

II0I0II0II0I0II0

II0I0II0II0I0II0

II0I0II0II0I0II0

P
ro

d
u

c
t 

D
e

s
ig

n

P
ro

d
u

c
t 

&
 D

o
m

a
in

 T
e

s
ti

n
g

Im
p

le
m

e
n

ta
ti

o
n

C
o

m
p

o
n

e
n

t 
T

e
s

ti
n

g

R
e

q
u

ir
e

m
e

n
ts

 E
n

g
in

e
e

ri
n

g

Product C

Product D

Product B

Product A
II0I0II0II0I0II0

II0I0II0II0I0II0

II0I0II0II0I0II0

II0I0II0II0I0II0

P
ro

d
u

c
t 

D
e

s
ig

n

P
ro

d
u

c
t 

&
 D

o
m

a
in

 T
e

s
ti

n
g

Im
p

le
m

e
n

ta
ti

o
n

C
o

m
p

o
n

e
n

t 
T

e
s

ti
n

g

R
e

q
u

ir
e

m
e

n
ts

 E
n

g
in

e
e

ri
n

g

Business Domain
Analysis & Portfolio
Definition

Architecture Develop-
ment & Roadmap
Definition

Core Asset
Development

Team 1 Team 2 (1…n)
Core Asset 1

Team 3

Requirements
Engineering

(reduced)

Architecture
Design &

Development

Software
Integration

Integration
Testing

Detailed
Analysis

Detailed
Design Implementation Test

Core Asset 2

Detailed
Analysis

Detailed
Design Implementation Test

Core Asset 3

Detailed
Analysis

Detailed
Design Implementation Test

Core Asset 4

Detailed
Analysis

Detailed
Design Implementation Test

Team 1 Team 2 (1…n)
Core Asset 1

Team 3

Requirements
Engineering

(reduced)

Architecture
Design &

Development

Software
Integration

Integration
Testing

Detailed
Analysis

Detailed
Design Implementation Test

Core Asset 2

Detailed
Analysis

Detailed
Design Implementation Test

Core Asset 3

Detailed
Analysis

Detailed
Design Implementation Test

Core Asset 4

Detailed
Analysis

Detailed
Design Implementation Test

Team 1 Team 2 (1…n)
Core Asset 1

Team 3

Requirements
Engineering

(reduced)

Architecture
Design &

Development

Software
Integration

Integration
Testing

Detailed
Analysis

Detailed
Design Implementation Test

Core Asset 2

Detailed
Analysis

Detailed
Design Implementation Test

Core Asset 3

Detailed
Analysis

Detailed
Design Implementation Test

Core Asset 4

Detailed
Analysis

Detailed
Design Implementation Test

1. Domain Scoping
2. Feature & Concept Modeling
3. Common Architecture & 

Component Definition
4. Domain Specific Language 

Design
5. Specification of Configuration 

Knowledge
6. Architecture & Component 

Implementation
7. Domain Specific Language 

Implementation
8. Configuration Knowledge 

Implementation in Generators

Generative Programming Processes

Figure 1: Mapping of GP Processes to Organizational Structure

4.3. GP and the Business Component Model

The Business Component Model is a methodology to model, analyse, design, 
construct, validate, deploy, customize, and maintain large scale distributed systems, 
developed by Herzum and Sims (Herzum and Sims, 2000). It consists of five 
dimensions: Architectural Viewpoints, Component Granularity, Development 
Process, Distribution Tier, and Functional Categories. In our previous work we have 
already shown how to align the Business Component Model with our Organizational 
Model to reflect the particularities of Systems Integration. The following sections 
will show how these five dimensions fit together with Generative Programming, 
assuming that development of components occurs with GP.

4.3.1. Architectural Viewpoints

The first dimension consists of four architectural viewpoints, which are the Project 
Management Architecture (PMA, concerned with organizational decisions, tools, and 
guidelines), the Technical Architecture (TA, defining the execution environment, 
component and user interface frameworks, and other technical facilities), the 
Application Architecture (AA, describing development patterns, guidelines, or 
standards), as well as the Functional Architecture (FA, identifying the features and 
functional aspects of a system and their relationships).

With regards to the Project Management Architecture, Generative Programming does 
not make any statements about the organization or structure of a development project 
within its processes. The PMA from the Business Component Model is therefore 
regarded beneficial to the GP approach. In our organizational model, the PMA is 
found in the Business Domain Layer, whose organizational decisions, tools, and 
guidelines will influence the development in GP. The remaining three, rather 
technical viewpoints, are concerned with the execution infrastructure and 



Chapter 4 – Applications and Impacts

169

programming frameworks (Technical Architecture), development patterns, 
guidelines, and programming standards (Application Architecture), as well as the 
functional aspects of a system including its implementation (Functional 
Architecture). Generative Programming in turn only offers the generic process 
common architecture & component definition. We therefore suggest replacing the 
respective GP process with the actual implementation of the much more detailed 
architectural viewpoints from the Business Component Model. For Generative 
Programming, this replacement offers a more comprehensive view on different 
aspects of the architecture, while for CBD it ensures coverage of more component 
related artefacts, such as the component infrastructure or execution environment.

4.3.2. Component Granularity

Generative Programming does not explicitly refer to well defined components as 
known from e.g. Enterprise Java Beans or Corba. Also it doesn’t conceptually 
concentrate on business processes and therefore does not know reasonable levels of 
granularity. An artefact may for instance be a generic and reusable data container for 
C++, allowing handling domain specific types of information. It may also be a 
reusable programming library providing a complex business concept like a bank 
account. Generative Programming rather concentrates on technologies and means to 
develop reusable artefacts of variable sizes, depending on the intended usage. This 
way of partitioning a problem into reusable artefacts is known as continuous 
recursion. One iteratively partitions a problem into different but reasonable 
granularities. The Business Component model in turn follows a discrete recursion 
approach. It therefore defines five levels of granularity: the language class, the 
distributed component (a component in its common sense, e.g. an EJB or CORBA 
component), the business component (still independently deployable, consisting of 
distributed components and glue code, representing a business process), and the 
system level component (a set of business components providing business 
functionality). The highest level of granularity is the federation of system-level 
components (i.e. system level components federated to provide multiple complex 
business services).

We believe that discrete recursion and thus partitioning of the problem is more 
beneficial in an environment with systematic reuse. For each layer of recursion, a 
developer has to define scope, characteristics, packaging, and deployment (Herzum 
and Sims, 2000). In an environment where components are to be reused as much as 
possible, it seems more beneficial to define these layers of recursion on a common 
basis. A middleware messaging adaptor for a specific ERP system will most likely 
exist as a distributed component as introduced above. A developer can rely on this 
concept and build his application accordingly. We therefore suggest to introduce 
discrete recursion to the Generative Programming approach if it is to be used within 
component based development and systematic reuse in mind.

4.3.3. Development Process

The Business Component Model encompasses a set of manufacturing processes, 
which support component, system, and federation of systems development. 
However, as most organizations are in a transitive state towards CBD, Herzum and 



Proceedings of the Ninth International Network Conference (INC2012)

170

Sims suggest a process called rapid system development (RSD). It is following the 
well known V-Model, whereas requirements to implementation denote the left, and 
component, system, and acceptance testing the right side of the V (Herzum and Sims, 
2000). RSD allows subsequently engineering reusable artefacts based on customer 
specific requirements and eventually building the respective end product. The 
advantage is that reusable artefacts evolve on the fly. The disadvantage is that, 
beginning with the requirements of one specific customer, one may easily miss 
important variation points or even take architectural decisions which may conflict 
with the overall scope of the product line. Generative programming in turn focuses 
much more on domain engineering activities and the technical implementation of 
reusable artefacts, rather than development of the end product. It puts explicit focus 
on feature modelling processes such as FODA or FeatuRSEB (Czarnecki and 
Eisenecker, 2000), as all GP artefacts rely on a detailed domain model. As research 
in the field has progressed, we also considered PLUSS (Product Line Use Case 
Modelling for Systems and Software engineering) (Eriksson et al., 2006) being a 
viable alternative for precise domain modelling. The advantage of PLUSS over 
FODA or FeatuRSEB is that besides a feature model it also allows to allocate use 
cases, use case variations, and cross-cutting concerns to each feature. In the context 
of the present work we follow the rationale of Generative Programming to define a 
precise model of the product domain before implementing any reusable artefacts. 
This seems especially important if domain specific languages and generators are to 
be built, although they will be rather simple in the beginning. We therefore suggest 
to enhance the Requirements, Analysis, and Design activities of Herzum and Sims’ 
rapid system development process with Feature Modelling and Use Case 
Development of Eriksson et.al.’s PLUSS approach (Eriksson et al., op. 2005). The 
result will be a detailed feature model, including a variety of use cases for the 
required feature combinations. Based on these artefacts, the customer specific 
application can be built and reusable components derived.

4.3.4. Distribution Tier

In their model, Herzum and Sims separate between user, workspace, enterprise, and 
resource tier. The user tier presents the component on the screen and communicates 
with the user. It may be stand-alone, plug in, or non-existent at all. The local 
business logic is implemented by the workspace tier, which will interact with the 
enterprise tier. Typical business logic may for instance include transaction 
management utilizing several enterprise-level resources. The latter are implemented 
by the enterprise tier, providing business rules, validation, and interaction between 
components. It typically forms the core functionality of business components of a 
complex, large-scale component based system. The resource tier manages access to 
shared resources, such as databases, files, or communication infrastructures and 
shields all higher layers from their technical implementation.

Such detailed differentiation of reusable components and their internal structure is 
not provided by the Generative Programming approach. Being more generic, GP 
leaves such decisions on the target architecture of the product line, which is in turn 
depending on the overall feature model (Czarnecki and Eisenecker, 2000). With 
regard to the Business Component model, feature model and architecture will already 
be available and are furthermore influenced by the conceptual structure of business 



Chapter 4 – Applications and Impacts

171

components. In combination with GP, we see no issues when implementing the four 
distribution tiers with the means of Generative Programming.

4.3.5. Functional Categories

The final dimension defines utility, entity, process, and auxiliary business 
components (Herzum and Sims, 2000). Utility components can most generally be 
reused and represent autonomous concepts, such as unique number generators, 
currency converters, or an address book. Entity business components represent the 
logical entities on which a business process operates and are specific to a particular 
business domain. Examples are item, invoice, address, or customer. The actual 
business process is implemented within a process business component. Usually 
unique for one industry or customer, it is hardly reusable. The fourth category, 
auxiliary business components, provides services usually not found within a process 
description. Such may be performance monitoring, messaging, or middleware 
services.

As with the distribution tier above, Generative Programming does not know any 
functional categories. However, a detailed feature model in connection with 
component granularity, distribution tiers, and functional categories, will provide a 
structured and standardized approach to generative development of business 
components. As such we believe it is more likely to yield systematic reuse than a 
structure that is flexible from component to component.

5. Conclusion & Further Research

As we have explained in chapter 3, systems integration comes with certain 
particularities requiring a highly efficient and cost effective way of implementing 
industrial key concepts. The low number of similar products in SI seems 
contradictive to Model Driven Engineering with its Domain Specific Languages, 
Model Transformers, and Code Generators. However, with integrating GP into our 
organizational model and combining it with CBD, we can save efforts for domain 
scoping, feature and concept modelling, architecture and component definition, 
configuration knowledge specification, and component implementation. All these 
activities, although slightly adapted, have already been completed, once it comes to 
the implementation of MDE.

Together with the Business Component Model, a standardized component and 
implementation architecture is available which allows us to systematically reuse 
functionality already developed. If a middleware adaptor will always be 
implemented as an auxiliary business component at the resource distribution tier, it is 
much more likely to be reused than a freely implemented one. We therefore believe 
that in order to get the most out of Generative Programming, it must be combined 
with a component based development approach. Based on our previous work 
(Minich et al., 2011), we found the Business Component Model to be most 
beneficial, especially in the context of systems integration.

The present paper completes the development of a concept for industrialized systems 
integration. It consists of the organizational model for software product lines in 



Proceedings of the Ninth International Network Conference (INC2012)

172

systems integration, reflecting specialization as the first industrial key principle. 
Subsequently, the alignment of Herzum and Sims’ Business Component Model with 
Vogler’s Integration Meta Model describes how to divide a system into a set of 
reusable artefacts, reflecting the particularities of systems integration. With the 
present work, Generative Programming has been identified as a potential way 
towards automation as the final industrial key principle. What is left to be done is a 
concluding description of the overall concept including the presentation of a field 
study across all three principles: Beginning with Business Domain design and 
subsequent Software Product Line definition, over the development of a detailed 
feature model and component structure, up to the definition and implementation of 
an initial Domain Specific Language and the according generators with the help of 
Generative Programming. It is intended to exemplarily develop at least one example 
of each artefact required for a successful industrialization of systems integration.

6. References

Clements, P. and Northrop, L. (2007), Software product lines: Practices and patterns, 
[Nachdr.], Addison-Wesley, Boston.

Czarnecki, K. (2005), “Overview of Generative Software Development”, in Banâtre, J.-P., 
Fradet, P., Giavitto, J.-L. and Michel, O. (Eds.), Unconventional Programming Paradigms, 
Lecture Notes in Computer Science, Vol. 3566, Springer Berlin / Heidelberg, pp. 97-97.

Czarnecki, K. and Eisenecker, U. (2000), Generative programming: Methods, tools, and 
applications, Addison Wesley, Boston.

Encyclopaedia Britannica (2005), “Industrial Revolution”, in Encyclopaedia Britannica: In 32 
volumes, Vol. 6, 15. ed., Encyclopaedia Britannica, Chicago, London, New Delhi, Paris, 
Seoul, Sydney, Taipei, Tokyo, pp. 304–305.

Eriksson, M., Börstler, J. and Borg, K. (op. 2005), “The PLUSS Approach - Domain Modeling 
with Features, Use Cases and Use Case Realizations”, in Obbink, H. and Pohl, K. (Eds.), 
Software product lines: 9th international conference, SPLC 2005, Rennes, France, September 
26-29, 2005 proceedings, Springer, Berlin, New York, NY, pp. 33–44.

Eriksson, M., Börstler, J. and Borg, K. (2006), “Software Product Line Modeling Made 
Practical”, Communications of the ACM, Vol. 49 No. 12, pp. 49–53.

Fischer, J. (1999), Informationswirtschaft Anwendungsmanagement, Oldenbourg, München, 
Wien.

Greenfield, J., Short, K. and Cook, S. (2004), Software factories: Assembling applications 
with patterns, models, frameworks, and tools, Wiley, Indianapolis, Ind.

Hasselbring, W. (2000), “Information System Integration”, Communications of the ACM, Vol. 
43 No. 6, pp. 32–38.

Herzum, P. and Sims, O. (2000), Business component factory: A comprehensive overview of 
component-based development for the enterprise, John Wiley, New York.

Leser, U. and Naumann, F. (2007), Informationsintegration: Architekturen und Methoden zur 
Integration verteilter und heterogener Datenquellen, 1. Aufl., dpunkt-Verl., Heidelberg.



Chapter 4 – Applications and Impacts

173

Minich, M., Harriehausen-Mühlbauer, B. and Wentzel, C. (2010), “An Organizational 
Approach for Industrialized Systems Integration”.

Minich, M., Harriehausen-Mühlbauer, B. and Wentzel, C. (2011), “Component Based 
Development in Systems Integration”, in GI Lecture Notes in Informatics 2011: Informatik 
schafft Communities, Ges. für Informatik, Bonn, p. 470.

Object Management Group (2003), MDA Guide Version 1.0.1.

Petrasch, R. and Meimberg, O. (2006), Model Driven Architecture: Eine praxisorientierte 
Einführung in die MDA, 1. Aufl., dpunkt, Heidelberg.

Pohl, K., Böckle, G. and Linden, F. (2005), Software product line engineering: Foundations, 
principles, and techniques ; with 10 tables, Springer, Berlin.

Riehm, R. (1997), “Integration von heterogenen Applikationen”, Dissertation, Universität St. 
Gallen, St. Gallen, 1997.

Selic, B. (2008), “Personal reflections on automation, programming culture, and model-based 
software engineering”, Automated Software Engineering, Vol. 15 3-4, pp. 379‐391.

Singh, Y. and Sood, M. (2009), “Model Driven Architecture: A Perspective”, in 
IEEE Computer Society (Ed.), Proceedings of the 2009 IEEE International Advance 
Computing Conference, IEEE Computer Society, Patiala, pp. 1644–1652.

Stahl, T. and Bettin, J. (2007), Modellgetriebene Softwareentwicklung: Techniken, 
Engineering, Management, 2., aktualisierte und erw. Aufl., dpunkt-Verl., Heidelberg.




