
Chapter 4 – Applications and Impacts

175

iSemServ: Facilitating the Implementation of Intelligent
Semantic Services

J.Mtsweni, E.Biermann and L.Pretorius

School of Computing, University of South Africa, Pretoria, South Africa
e-mail: mtswejs@unisa.ac.za; bierman@xsinet.co.za; pretol@unisa.ac.za

Abstract

The process of developing semantic services is viewed by service developers as being
complex, and tedious. The main barriers that have been identified include a steep learning
curve for emerging semantic models and ontological languages, the lack of integrated tool
support for developing semantic services, and lack of interoperability between emerging
semantic technologies and matured Web service technologies. In addition, current efforts that
are meant to ease the implementation of semantic services are fragmented; that is, developers
are required to use a combination of disconnected tools to realize semantic services. Moreover,
existing semantic technologies are tightly coupled to specific semantic models and service
architectural styles; leading to restrictive development environments. In this paper, an
iSemServ framework is proposed, and implemented as an Eclipse plug-in with the core
objective to facilitate, unify, and accelerate the process of developing intelligent semantic
services using semantic models and service architectural styles of choice. Experimental
evaluations demonstrate that a solution, such as iSemServ has the potential to minimize some
of the barriers associated with building intelligent semantic services.

Keywords

iSemServ, Eclipse, Semantic Web Services, Ontologies, Intelligent Agents, Model-
driven

1. Introduction

The applicability and benefits of employing Semantic Web Services (SWS) also
referred to as semantic services in this paper are well studied and documented in
academia and industry. In (Bachlechner, 2008, de Bruijn et al., 2005a, Janev and
Vranes, 2010), the benefits that could be relished by businesses from utilizing
semantic technologies are highlighted. These include: (1) improved representation,
sharing, searching, reasoning, and re-use of data and services on the Web, (2)
anywhere and anytime dynamic connection of business partners through services,
and (3) automation of various tasks on the Web such as service discovery, selection,
composition, choreography, orchestration, execution, and monitoring.

Nevertheless, in spite of all the benefits, the practical uptake and real-world
implementation of semantic services has remained minute to date. A number of
scholars (Bachlechner, 2008, Agre et al., 2007, Cardoso, 2007, Daniel et al., 2010)
have identified some major challenges that are contributing to this lack of

Proceedings of the Ninth International Network Conference (INC2012)

176

implementation and usage. Some of the major issues that are common include the
lack of unified semantic service development tools, non-integration of semantic
technologies into existing matured Web services technologies, steep learning curve
for emerging semantic models, complex semantic description languages, and the lack
of standardisation within the semantic services domain. In addition, existing
platforms do not support the development of semantic services that are intelligent
beyond the application of ontologies as envisaged within the Semantic Web Services
Architecture (SWSA) (Burstein et al., 2005). Other observations are that existing
semantic tools are fragmented and tightly coupled specific semantic models and
languages; leading to prolonged service development process, and restrictive
environments.

In this paper, we thus attempt to address some of the identified challenges by
proposing a unified semantic service creation framework that support multiple
semantic description models, and service architectural styles called iSemServ (from:
Intelligent Semantic Services). The key objective of the proposed framework is to
facilitate the process of implementing intelligent semantic services through a unified,
interoperable, and extensible environment.

The remaining sections of this paper are structured as follows. Section 2 provides
background information related to intelligent semantic services and its fundamental
building blocks. Section 3 discusses the underlying iSemServ framework that
provides a blueprint for facilitating the process of building intelligent semantic
services. Section 4 demonstrates the implementation of the proposed iSemServ
framework as an Eclipse plug-in. In Section 5, the evaluation results for the
suggested solution are presented with the main focus on performance, and Section 6
concludes the paper with a summary and possible future research.

2. Intelligent Semantic Services

Semantic services are geared towards addressing the drawbacks of syntactic services
by mapping syntactic descriptions with semantic descriptions (Lu et al., 2007).
Semantic descriptions purport to describe what a service does (i.e. service
capability), how does it achieve its functionalities (i.e. service behavior), and how to
access its functionalities (i.e. orchestration and choreography) (de Bruijn et al.,
2005a). Within the semantic services domain, a number of conceptual ontology
models have been proposed on how to map semantic descriptions; which are derived
from ontologies (Gruber, 1993), into syntactic services. Some of the prominent
semantic models to date are heavy-weight models such Web Ontology Language for
Services (OWL-S) (Martin et al., 2004) and Web Service Modeling Ontology
(WSMO) (Roman et al., 2006).

The main objective of the heavy-weight semantic models is on exploiting commonly
agreed upon vocabularies in a form of domain and service ontologies (Kuropka et al.,
2008) to represent and describe different aspects of Web services (WS) separately
from syntactic descriptions.

OWL-S is one of the first heavy-weight semantic efforts based on the Web Ontology
Language (OWL). It provides a structure for defining semantic descriptions through

Chapter 4 – Applications and Impacts

177

the use of service profiles; which semantically describe what a service is capable of
offering to prospective consumers, service model: describes the specific behavior of
a service in terms of its input, output, pre-conditions, and effect, and service
grounding: describes how a semantic service can be invoked and executed.
Comparably, WSMO is an ontology-based model for describing semantic services -
based on the WSML (Web Services Modeling Language) (de Bruijn et al., 2005b).
WSMO focuses on four elements that are essential in describing semantic services.
These are: (1) Ontologies: provide formal concepts that can be used by other WSMO
elements (2) Web Services: describe functional, non-functional, and behavioral
aspects of a service, (3) Goals: semantically capture users’ request that could invoke
the service capability, and (4) Mediators: handle incompatibilities and mismatches
between terminologies used by WSMO elements.

In the context of this paper, an intelligent semantic service (IsS) extends and
leverages conventional Web services with intelligentt characteristics adopted from
the domain of intelligent agents (Mtsweni et al., 2010). This is done to realize the
emergence of services that are machine-processable and interpretable; thus leading to
minimal human intervention when it comes to service provisioning on the Web
(García-Sánchez et al., 2011). The intelligence concept is commonly associated with
autonomy, reactive, proactive, and collaborative or social ability properties.
Henceforth, adopting the core intelligent agent properties found in (Jennings and
Wooldridge, 1998, Protogeros, 2008), and the Semantic Web key enablers found in
(Studer et al., 2007, de Bruijn et al., 2008), an intelligent semantic service is defined
as a semantically enabled software unit representing some business functionality
that could be accessed through the Web, and is capable of being: (1) Autonomous,
(2) proactive, (3) reactive (4) machine-processable and understandable, as well as
(5) collaborative (Daniel et al., 2010).

Furthermore, the fundamental building blocks that comprise intelligent semantic
services are: (1) syntactic descriptions, (2) domain ontologies, (3) semantic
descriptions, and (4) intelligence. These building blocks are essential as they provide
a base on how intelligent semantic services could be simply developed within a
unified service-creation environment. The following section delves into the
suggested framework that is meant to facilitate the realisation of these fundamental
building blocks within a unified environment.

3. iSemServ: The proposed framework

In Figure 1, the proposed iSemServ framework is demonstrated. The framework
adopts a model-driven engineering (MDE) (Qafmolla and Cuong, 2010) technique to
enable modelling, specification, and description of intelligent semantic services.

Proceedings of the Ninth International Network Conference (INC2012)

178

S e
rv

i c
es

 L
a

ye
r

Se
m

an
ti

cs
 L

ay
er

In
t e

lli
ge

n
ce

 L
ay

e
r

Service Modeller Model2Code
Transformer

Syntactic
Descriptor

Service
Editor

Semantics
Descriptor

Knowledge Store
(Ontology-based)

Semantics
Editor

Intelligence
Generator/Wrapper

Intelligence
Editor

Dependency

Generalization ReuseContribution

Service
Architectural Style

Selector

Semantics
Model Selector

Linkage

Figure 1: iSemServ framework

The framework is designed based on the overarching principles of uniformity,
simplicity, interoperability, decoupling, multiple language support, and intelligence.
These principles were identified through an in-depth literature review of related work
(Daniel et al., 2010, Mtsweni et al., 2010), and from the challenges that the iSemServ
framework purports to address. The framework is presented in a multi-layered format
for supporting the development of service descriptions, semantic descriptions, and
the intelligence functionality in an independent manner. The core layers are: services
layer, semantics layer, and intelligence layer. The following subsections explain the
purpose of each layer without focusing on the technologies that could be used to
implement these layers. Section 4 will highlight some of the technologies that could
be used to implement the specific modules of the suggested framework.

Chapter 4 – Applications and Impacts

179

3.1. Services Layer

This layer deals with the initial core phases of producing conventional Web services
- without semantics and/or intelligence. The first step involves creating structured
and annotated service models that represent the functional and non-functional aspects
of intended services, and this process is facilitated by the Service Modeller module.
The service model serves as a basis for other layers as well, particularly for
automatically generating relevant service source code stubs (e.g. semantic
descriptions), thus reducing service development time. The Model2Code transformer
uses the defined templates and transformation rules to automatically translate service
models into syntactic descriptions assisted by the Syntactic Descriptor module;
which houses different description templates. In addition, the Model2Code
transformer translates the service model into partial service logic (e.g. Java). The key
in this layer is that services of different architectural styles such as SOAP or
RESTful (Filho and Ferreira, 2009) can be auto-generated with the help of the
Service Architectural Style Selector (SASS) module. New architectural styles or
standards could easily be accommodated by simply defining and integrating new
templates and transformation rules into the Model2Code transformer.

3.2. Semantics Layer

This layer uses the Service Modeller module, and relies on the Model2Code
transformer module to automatically generate domain ontologies and semantic
descriptions. Since there are a number of semantic models that could be used to
semantically describe Web services, the proposed framework provides the developer
with the ability, through the use of a defined UML profile with key stereotypes (e.g.
<<WSMO>>), to choose the preferred semantics model. Depending on the annotations;
semantic descriptions and domain ontologies can be automatically generated – using
the Model2Code transformer and the Semantics Descriptor module. Because the
semantic descriptions and ontologies auto-generated could be incomplete depending
on the defined service models; the service engineer is provided with a Semantics
Editor module, in order to visualize, edit, augment, and validate the generated
semantic descriptions and/or ontologies. In this layer, an ontology-based knowledge
store is also provided, so that developers could also re-use existing ontologies to
semantically describe services – where applicable. Additionally, the knowledge store
is shared with the intelligence layer, as depicted in Figure 1, for purposes of using
the same domain and service knowledge to embed semantic services with
intelligence.

The key in this layer is also that service developers are not restricted in terms of
semantic models to use for deriving semantic descriptions. The developer needs to
only annotate the service model with the relevant stereotypes that corresponds to the
semantic model of choice. The Model2Code transformer and the Semantics
Descriptor will then use the defined templates and transformation rules to auto-
generate the relevant code. New semantic models could also be easily accommodated
in the framework by defining new templates and transformation rules.

Proceedings of the Ninth International Network Conference (INC2012)

180

3.3. Intelligence Layer

The Intelligence Generator/Wrapper module, as depicted in Figure 1, is responsible
for generating all the necessary intelligence logic (e.g. automatic service execution)
for the developed semantic services and wrapping of semantic descriptions and
syntactic descriptions with intelligent properties. The module also relies on the
service model and re-usable intelligence logic (i.e. agents’ behaviour and operations)
available through the Intelligence Editor. The properties that are essential for
completely realizing the intelligence for semantic services are those that implement
autonomous, proactive, reactive, and collaborative behaviours.

4. iSemServ Implementation: an Eclipse Plug-in

The iSemServ framework was partially implemented as a unified plug-in within the
Eclipse platform; which encompasses a variety of re-usable service engineering
components, such as the UML2 SDK (for enabling service models development,
UML profile with specific stereotypes), Acceleo (model-to-text language generation
framework was used for implementing the Model2Code transformer – templates and
transformation rules) and JADE (a Java-based agent development environment was
used for implementing the intelligent features) and JESS (a Java-based rule engine
for realizing other intelligent features, such as reasoning) (Balachandran, 2008).
Eclipse is touted as a mature, well-designed, and extensible architecture (Rivières
and Wiegand, 2004). The Eclipse environment was chosen because of its openness,
and wide acceptance in the service development domain. Figure 2 depicts a user
interface for the iSemServ Eclipse plug-in; which is meant to facilitate the
implementation of intelligent semantic services in a simpler and unified approach.

Figure 2: iSemServ Eclipse plug-in

Chapter 4 – Applications and Impacts

181

This plug-in integrates with a number of technologies and templates that makes it
possible for the service engineers to only design and import an annotated service
model, select the different artefacts (e.g. domain ontologies) that are preferred for the
new or existing Web services, and click finish to initiate the auto-generation process.
Once the different artefacts have been generated into Eclipse project workspace, the
service developer would then use Eclipse integrated editors and other tools to
augment, edit, and validate some of the artefacts before deploying the final
intelligent semantic service into available semantic service repository for discovery
and consumption. A use case scenario implemented in (Mtsweni et al., 2011)
demonstrates the type of an annotated service model, semantics models used, and the
samples of the generated code (e.g. RESTful services and WSMO-based semantic
descriptions).

5. Evaluation

Using real-life project scenarios (Mtsweni et al., 2011), a number of service models
were designed in order to experiment and evaluate the usefulness and performance of
the iSemServ Eclipse plug-in. The models comprised 6 to 1152 classes. In Figure 3,
an overall graph is depicted highlighting the performance of the plug-in under
varying service model sizes. The overall execution times, presented in seconds (s)
illustrate the time it took by the platform to generate the artefacts involved in
engineering intelligent semantic services.

Figure 3: Overall performance of the plug-in

The graph suggests that, as the size of the service model grows, so does the amount of time
required to automatically transform the model to different artefacts. For instance, processing a
service model with 144 classes required about 36 seconds. An average of 73 seconds was
additionally required to generate a total number of 576 Java classes and mapped building
blocks, such as semantic descriptions. The code generation execution time increased to 135
seconds for processing a service model made up of 1152 classes. Further evaluations revealed
that the auto-generation of syntactic descriptions in the services layer took most of the
processing time as compared with other artefacts in the semantics and intelligence layer, as the
service model size became bigger. Moreover, it was derived that the auto-generation process
can be split into different phases, thereby minimizing the processing load and improving the
performance of the plug-in as it is not a requirement that all artefacts need to be auto-
generated at the same time. From the experiments, it was evident that the times to generate
different artefacts that make up an intelligent semantic service are significantly smaller as
compared to when the service developers have to manually generate all the relevant intelligent

Proceedings of the Ninth International Network Conference (INC2012)

182

semantic services’ components. The plug-in was developed in a manner that ensures
uniformity, simplicity, interoperability, decoupling, and multiple language support. Hence, as
it can be noted in Figure 2, the developer only needs to import an annotated model and select
all the necessary artefacts that need to be generated. The process that is not accommodated
within the plug-in is that of editing the generated artefacts. That process is generally
accommodated by the different editors within the Eclipse environment.

6. Conclusion

Semantic services are seen as the main building blocks for the dynamic Web, where
user intervention is kept to a minimum. However, there are still a number of
challenges that need to be addressed in order to make semantic services
commercially relevant. The main hindrance tackled in this paper is the lack of
unified tool support for developing semantic services. In addressing this challenge, a
model-driven iSemServ framework has been proposed that purports to facilitate the
implementation of intelligent semantic services independent of a particular semantic
model or service architectural style.

The proposed framework follows a top-down approach, where semantic services are
modeled, and seamlessly transformed into specific service implementations,
syntactic service descriptions, semantic descriptions, and intelligence using
transformation rules and templates implemented specifically for the suggested
approach. The approach was implemented through a simple Eclipse plug-in with the
support of a number of matured tools, such as the UML2 SDK and Acceleo. The
plug-in was then evaluated through real-life project scenarios for performance and
utility. It was deduced that the suggested approach is one possible solution in
minimizing the current hindrances of semantic services, especially due to its
principles of standards independency, and automatic code generations.

The main contributions emanating from the suggested and implemented are: (1) an
end-to-end approach of developing intelligent semantic services, thus enabling the
developer to use one platform to realize all the modules comprising intelligent
semantic services, (2) enable service engineers to focus on developing intelligent
semantic services in a structured and extensible, and platform-independent manner,
(3) support different architectural styles and semantic models by exploiting template-
based code generators, and (4) intelligence mapping of services at message and
knowledge levels for the purposes of automatically processing semantic service
requests and responses by machines with minimal user intervention. Nevertheless,
further research points to improving our approach with regard to multiple-language
support as currently the framework only relies on templates and transformation rules,
which need to be developed for each semantic model or service architectural style.

7. References

Agre, G., Marinova, Z., Pariente, T. & Micsik, A. (2007), Towards Semantic Web service
engineering. Workshop on service matchmaking and resource retrieval in the semantic Web
(SMRR 2007) CEUR

Chapter 4 – Applications and Impacts

183

Bachlechner, D. (2008), Semantic Web service research: current challenges and proximate
achievements. International Journal of Computer Science and Applications, 5, 117-140.

Balachandran, B. M. (2008), Developing Intelligent Agent Applications with JADE and JESS.
12th international conference on Knowledge-Based Intelligent Information and Engineering
Systems, Part III. Zagreb, Croatia, Springer-Verlag.

Burstein, M., Bussler, C., Finin, T., Huhns, M. N., Paolucci, M., Sheth, A. P., Williams, S. &
Zaremba, M. (2005), A semantic Web services architecture. IEEE Internet Computing, 9, 72-
81.

Cardoso, J. (2007), Semantic Web Services: theory, tools and applications, IGI Global.

Daniel, F., Facca, F., Mtsweni, J., Biermann, E. & Pretorius, L. (2010), iSemServ: Towards
the Engineering of Intelligent Semantic-Based Services. Current Trends in Web Engineering.
Springer Berlin / Heidelberg.

De Bruijn, J., Fensel, D., Keller, U. & Lara, R. (2005a), Using the web Service modelling
ontology to enable semantic ebusiness. Communications of the ACM, 48.

De Bruijn, J., Fensel, D., Kerrigan, M., Keller, U., Lausen, H. & Scicluna, J. (2008) Modeling
Semantic Web Services: The Web service modeling language, Springer-Verlag Berlin
Heidelberg.

De Bruijn, J., Lausen, H., Krummenacher, R., Polleres, A., Predoiu, L., Kifer, M. & Fensel, D.
(2005b), The Web Service Modeling Language WSML. . WSML Final Draft. DERI.

Filho, O. F. F. & Ferreira, M. A. G. V. (2009), Semantic Web Services: a RESTful approach.
IADIS International Conference WWW/Internet 2009 Rome, Italy.

García-Sánchez, F., Sabucedo, L. Á., Martínez-Béjar, R., Rifón, L. A., Valencia-García, R. &
Gómez, J. M. (2011), Applying intelligent agents and semantic web services in eGovernment
environments. Expert Systems, 1-21.

Gruber, T. R. (1993), A translation approach to portable ontologies. Knowledge Acquisition, 5,
199-220.

Janev, V. & Vranes, S. (2010), Applicability assessment of Semantic Web technologies.
Information Processing & Management.

Jennings, N. R. & Wooldridge, M. (1998), Applications of intelligent agents. Agent
technology: foundations, applications, and market. Springer-Verlag New York, Inc.

Kuropka, D., Troger, P., Staab, S. & Mathias, W. (Eds.) (2008), Semantic Service
Provisioning.
Lu, J., Zhang, G. & Ruan, D. (Eds.) (2007), E-Service Intelligence: Methodologies,
Technologies and Applications, Springer-Verlag Berlin Heidelberg.

Martin, D., Burstein, M., Hobbs, J., Lassila, O., Mcdermott, D., Mcilraith, S., Narayanan, S.,
Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N. & Sycara, K. (2004), OWL-S:
Semantic Markup for Web Services X, W3C.

Mtsweni, J., Biermann, E. & Pretorius, L. (2010), Toward a service creation framework: a
case of intelligent semantic services. 2010 Annual Research Conference of the South African

Proceedings of the Ninth International Network Conference (INC2012)

184

Institute of Computer Scientists and Information Technologists. Bela Bela, South Africa,
ACM.

Mtsweni, J., Biermann, E. & Pretorius, L. (2011), Engineering RESTful semantic services on
the fly. Proceedings of the South African Institute of Computer Scientists and Information
Technologists Conference on Knowledge, Innovation and Leadership in a Diverse,
Multidisciplinary Environment. Cape Town, South Africa, ACM.

Protogeros, N. (2008), Agent and Web services technologies in Virtual Enterprises. IN
PROTOGEROS, N. (Ed.), IGI Global.

Qafmolla, X. & Cuong, N. V. (2010), Automation of Web services development using model
driven techniques. The 2nd International Conference on Computer and Automation
Engineering (ICCAE). Singapore IEEE.

Rivières, J. D. & Wiegand, J. (2004), Eclipse: a platform for integrating development tools.
IBM Systems Journal, 43, 371-383.

Roman, D., De Bruijn, J., Mocan, A., Lausen, H., Domingue, J., Bussler, C. & Fensel, D.
(2006), WWW: WSMO, WSML, and WSMX in a nutshell. In R. MIZOGUCHI, Z. S., and F.
GIUNCHIGLIA (Ed.) 1st Asian Semantic Web Conference Beijing, China, Springer-Verlag.

Studer, R., Grimm, S. & Abecker, A. (Eds.) (2007), Semantic web services: concepts,
technologies, and applications, Springer-Verlag Berlin.

