
Chapter 4 – Applications and Impacts

261

Service-Oriented Architecture: Performance Issues and
Approaches

M.Swientek1, 2, 3, U.Bleimann1 and P.S.Dowland2

1University of Applied Sciences Darmstadt, Germany
2Centre for Information Security and Network Research, University of Plymouth,

United Kingdom
3sd&m, Software Design & Management AG, Berliner Str. 76, 63065 Offenbach,

Germany
e-mail: martin@swientek.org

Abstract

The introduction of a Service-Oriented Architecture (SOA) can affect performance in a
negative way. This exacerbates the application of SOA to systems for bulk data processing.
This paper describes specific aspects of Service-Oriented Architectures that impact
performance particularly. It discusses several approaches to these issues that are currently
established and motivates the need for a framework to implement an SOA for bulk data
processing systems.

Keywords

SOA, Service-Oriented Architecture, batch processing, performance

1. Introduction

Service-Oriented Architecture (SOA) is becoming a popular approach to integrate
heterogeneous applications into an application landscape. Apart from functional
requirements, an IT system has to meet the non-functional requirements of the
functional and technical operations. Implementing an SOA has certain impacts on
these non-functional requirements that ought to be considered beforehand.

Performance is an important non-functional requirement of an IT system and is vital
to the acceptance and the operability of the system. Since performance tests are
usually not performed until the system is already in place, performance issues are
often revealed at a late stage in the development process. In order to improve the
performance of the system extensive changes to the architecture are needed which
ultimately leads to significant project risks. As the introduction of SOA can
deteriorate the performance it is crucial to be aware of the performance drawbacks
and how to address them properly at the stage of the system design.

Bulk data processing in particular demands a high-performance implementation.
Current approaches to implement an SOA using web service technologies and
infrastructures do not match very well with a batch-processing model since they are
focused on a request-response communication scheme.

Proceedings of the Seventh International Network Conference (INC2008)

262

This paper describes the performance issues specific to SOA and discusses current
approaches to address them. It motivates the need of a framework to integrate a batch
processing system in a service-oriented application landscape. The paper is
organized as follows: The next section introduces the concept of Service-Oriented
Architecture, describes common properties of batch processing systems and the
understanding of performance used in this paper. Section 3 describes the aspects of
an SOA that have an impact on performance. The next Section discusses current
approaches to the performance issues identified in the preceding section. Section 4
motivates the need of a framework for bulk data processing. This paper concludes
with a summarization of the presented performance issues and approaches.

1.1. Service-Oriented Architecture

Service-Oriented Architecture (SOA) is an architectural pattern to build application
landscapes from single business components. These business components are loosely
coupled by providing their functionality in form of services. A service represents an
abstract business view of the functionality and hides all implementation details of the
component providing the service. The definition of a service acts as a contract
between the service provider and the service consumer. Services are called using an
unified mechanism which provides a plattform independent connection of the
business components while hiding all the technical details of the communication.
The calling mechanism also includes the discovery of the appropriate service
(Richter et al., 2005).

By separating the technical from the business aspects, SOA aims for a higher level of
flexibility of enterprise applications.

Building an SOA involves concrete technical decisions how to implement its
concepts. This includes how to implement services, how to discover the appropriate
service and how to interconnect them. This paper focusses on these technical
decisions that need to be made in order to implement an SOA in a performant way.

1.2. Batch Processing Systems

A batch processing system is an application that processes bulk data without user
interaction. Input and output data is usually organised in records using a file- or
database-based interface. In case of a file-based interface, the application reads a
record from the input file, processes it and writes the record to the output file.

A batch processing system exhibits the following key characteristics:

• Bulk processing of data
A Batch processing system processes several gigabytes of data in a single
run. Multiple systems are running in parallel controlled by a job scheduler
to speed up processing.

Chapter 4 – Applications and Impacts

263

• No user interaction
There is no user interaction needed for the processing of data. It is
impossible due to the amount of data being processed.

• File- or database-based interfaces
Input data is read from the file system or a database. Output data is also
written to files on the file system or a database. Files are transferred to the
consuming systems through FTP by specific jobs.

• Operation within a limited timeframe
A batch processing system often has to deliver its results in a limited
timeframe due to service level agreements (SLA) with consuming systems.

• Offline handling of errors
Erroneous records are stored to a specific persistent memory (file or
database) during operation and are processed afterwards.

Typical applications that are implemented as batch processing systems are billing
systems for telecommunication companies used for mediating, rating and billing of
call events.

1.3. Performance

Performance is a quality attribute of a software system and is crucial to the
acceptance of a developed system both by users and IT operations.

The performance of a system can be described by multiple metrics. The following
metrics are relevant to the understanding of this paper:

• Response Time
Time it takes for the service consumer to receive a response from the
service provider

• Throughput
Number of requests a service provider is able to process in fixed timeframe

• Latency
Time it takes that a services request is received by the servicer provider and
vice versa

2. SOA Performance Hotspots

This section describes the different aspects of a Service-Oriented Architecture where
performance issues typically occur.

A system implemented according to the principles of SOA is a distributed system.
Services are hosted on different locations belonging to different departments and
even organizations. Hence, the performance drawbacks of a distributed system

Proceedings of the Seventh International Network Conference (INC2008)

264

generally also apply to SOA. This includes the marshalling of the data that needs to
be sent to the service provider by the service consumer, sending the data over the
network and the unmarshalling of data by the service provider.

Apart from these general issues of a distributed system certain properties of an SOA
deteriorate the performance even more.

2.1. Integration of Heterogeneous Technologies

A main goal of introducing an SOA is to integrate applications implemented with
heterogeneous technologies. This is achieved by using specific middleware and
intermediate protocols for the communication. These protocols are typically based on
XML, like SOAP (SOAP Specification, 2007). XML, as a very verbose language,
adds a lot of meta-data to the actual payload of a message. The resulting request is
about 10 to 20 times larger than the equivalent binary representation (O’Brian et al.,
2007), which leads to a significant higher transmission time of the message.
Processing these messages is also time-consuming, as they need to get parsed by a
XML parser before the actual processing can occur.

The usage of a middleware like an Enterprise Service Bus (ESB) adds further
performance costs. An ESB usually processes the messages during transferring.
Among other things, this includes the mapping between different protocols used by
service providers and service consumers, checking the correctness of the request
format, adding message-level security and routing the request to the appropriate
service provider (See, for example, Josuttis, 2007 or Krafzig et al., 2005).

2.2. Loose Coupling

Another aspect of SOA that has an impact on performance is the utilisation of loose
coupling. The aim of loose coupling is to increase the flexibility and maintainability
of the application landscape by reducing the dependency of its components on each
other. This denotes that service consumers shouldn't make any assumptions about the
implementation of the services they use and vice versa. Services become
interchangeable as long they implement the interface the client expects.

Engels et al. consider two components A and B loosely coupled when the following
constraints are satisfied (Engels et al., 2008):

• Knowledge
Component A knows only as much as it is needed to use the operations
offered by component B in a proper way. This includes the syntax and
semantic of the interfaces and the structure of the transferred data.

• Dependence on availability
Component A provides the implemented service even when component B is
not available or the connection to component B is not available.

Chapter 4 – Applications and Impacts

265

• Trust
Component B does not rely on component A to comply with pre-conditions.
Component A does not rely on component B to comply with post-
conditions.

Coupling between services occurs on different levels. Krafzig et al. describe the
following levels of coupling that are leveraged in an SOA (Krafzig et al., 2005).

Level Tight Coupling Loose Coupling
Physical coupling Direct physical link

required
Physical intermediary

Communication style Synchronous Asynchronous
Type system Strong type system Weak type system
Interaction pattern OO-style navigation of

complex object trees
Data-centric, self-
contained messages

Control of process logic Central control of
processing logic

Distributed logical
components

Service discovery and
binding

Statically bound services Dynamically bound
services

Platform dependencies Strong OS and
programming language
dependencies

OS and programming
languages independent

Table 1: Levels of coupling (Krafzig et al., 2005)

The gains in flexibility and maintainability of loose coupling are amongst others
opposed by performance costs.

Service consumers and service provider are not bound to each other statically. Thus,
the service consumer needs to determine the correct end point of the service provider
during runtime. This can be done by looking up the correct service provider in a
service repository either by the service consumer itself before making the call or by
routing the message inside the ESB.

Apart from very few basic data types, Service consumers and service providers do
not share the same data model. It is therefore necessary to map data between the data
model used by the service consumer and the data model used by the service provider.

3. Current Approaches

This section describes current approaches to the performance issues introduced in the
previous section.

3.1. Hardware

The obvious solution to improve the processing time of a service is the utilization of
faster hardware and more bandwidth. SOA performance issues are often neglected by
suggesting that faster hardware or more bandwidth will solve this problem. However,

Proceedings of the Seventh International Network Conference (INC2008)

266

it is often not feasible to add faster hardware in a late stage of the project because it
involves more costs than initially planned.

3.2. Compression

The usage of XML as an intermediate protocol for service calls has a negative impact
on their transmission times over the network. The transmission time of service calls
and responses can be decreased by compression. Simply compressing service calls
and responses with gzip can do this. The World Wide Web Consortium (W3C)
proposes a binary presentation of XML documents called binary XML (EXI
Working Group, 2007) to achieve a more efficient transportation of XML over
networks.

It must be pointed out that the utilisation of compression adds the additional costs of
compressing and decompressing to the overall processing time of the service call.

3.3. Service Granularity

To reduce the communication overhead or the processing time of a service, the
service granularity should be reconsidered.

Coarse-grained services reduce the communication overhead by achieving more with
a single service call and should be the favoured service design principle (Hess,
2006). However, the processing time of a coarse grained service can pose a problem
to a service consumer that only needs a fracture of the data provided by the service.
To reduce the processing time it could be considered in this case to add a finer
grained service that provides only the needed data (Josuttis, 2007).

It should be noted that merging multiple services to form a more coarse grained
service or splitting a coarse grained service into multiple services to solve
performance problems specific to a single service consumer reduces the reusability
of the services for other service consumers (Josuttis, 2007).

3.4. Degree of Loose Coupling

The improvements in flexibility and maintainability gained by loose coupling are
opposed by drawbacks on performance. Thus, it is crucial to find the appropriate
degree of loose coupling.

Hess et al. introduce the concept of distance to determine an appropriate degree of
coupling between components. The distance of components is comprised of the
functional and technical distance. Components are functional distant if they share
few functional similarities. Components are technical distant if they are of a different
category. Categories classify different types of components like inventory
components, process components, function components and interaction components.

Distant components trust each other in regard to the compliance of services levels to
a lesser extent than near components do. The same applies to their common

Chapter 4 – Applications and Impacts

267

knowledge. Distant components share a lesser extent of knowledge of each other.
Therefore, Hess et al. argue that distant components should be coupled more loosely
than close components (Hess et al., 2006).

The degree of loose coupling between components that have been identified to be
performance bottlenecks should be reconsidered to find the appropriate trade-off
between flexibility and performance. It can be acceptable in that case to decrease the
flexibility in favour of a better performance.

4. Applying SOA to Batch Processing Systems

How to apply the concepts of Service-Oriented Architecture to batch processing
systems considering the arguments presented in section 2? A naive approach would
be the utilisation of web service technologies for these kinds of systems as well.
However, because of the performance issues mentioned in this paper, this option
would not scale for bulk processing of data with a batch-processing model.

Wichaiwong et al. for example propose an approach to transfer bulk data between
web services per FTP. The SOAP messages transferred between the web services
would only contain the necessary details how to download the corresponding data
from an FTP server since this protocol is optimized for transferring huge files
(Wichaiwong et al., 2007). This approach solves the technical aspect of efficiently
transferring the input and output data but does not pose any solutions how to
implement lose coupling and how to integrate heterogeneous technologies, the
fundamental means of an SOA to improve the flexibility of an application landscape.

In order to integrate a batch processing system into a service-oriented application
landscape several design decisions need to get addressed:

• How to implement lose coupling?
• What is the appropriate degree of loose coupling?
• What is the right service granularity?
• Which middleware technologies can be utilised for the integration of

heterogeneous technologies?
• Who is responsible for data transformation?
• What data formats should be used?

Given that there are no obvious answers to these questions, there is a certain need of
a framework that supports the service-oriented integration of batch processing
systems by offering proven solutions for these issues. The design of such a
framework for the integration of batch processing systems in a service-oriented
application landscape will be carried out in a PhD Thesis.

5. Conclusion

The introduction of an SOA generally has a negative impact on performance. Among
general performance drawbacks an SOA shares with other distributed technologies,
two main concepts of an SOA that deteriorate performance even more are described

Proceedings of the Seventh International Network Conference (INC2008)

268

in this paper. The communication overhead introduced by using intermediate
protocols and specific middleware like an ESB to integrate heterogeneous
technologies and the utilisation of loose coupling in order to increase the flexibility
and maintainability of the application landscape.

This paper discusses several approaches to improve performance in an SOA that are
currently established.

The obvious approach is to utilize faster hardware and more network bandwidth. The
compression of messages poses an option for reducing transmission times. Other
approaches suggest reconsidering the service or architecture design. To decrease the
communication overhead immanent in an SOA services should be coarse grained. Is
the processing time of a coarse grained service causing problems for a specific
service consumer, a finer grained service should be added.

To apply the proper approach to performance issues it is vital to know the bottleneck
of the system. Unfortunately, the measuring of system performance and the
investigation of bottlenecks can be done only at a late stage in the development
phase. SOA Performance models are trying to anticipate the performance behaviour
during the design phase but they are currently still under research.

Improving the performance of a system always impacts other quality attributes.
Adjusting the degree of loose coupling affects the flexibility of the system. Merging
services to more coarse grained services or splitting coarse grained services into finer
grained services to solve performance issues of specific service consumers impacts
the reusability of the services. Thus, it is vital to find the appropriate trade-off
between performance and other quality attributes of the system like flexibility,
maintainability and reusability.

Batch processing systems in particular demand a high-performance implementation.
In order to integrate these kinds of systems in a service-oriented application
landscape several design decisions need to get addressed. For example, what is the
appropriate degree of loose coupling and the right service granularity to achieve the
required performance? Given that there are no obvious answers to these questions,
there is a certain need for a framework for service-oriented processing of bulk data.

The design of such a framework will be the subject of a PhD Thesis, which will be
carried out at the University of Plymouth in conjunction with the University of
Applied Sciences, Darmstadt.

6. References

Engels, G., Hess, A., Humm, B., Juwig, O., Lohmann, M., Richter, J.-P., Voß, M. and
Willkomm, J. (2008), Quasar Enterprise, dpunkt.verlag, ISBN: 978-3-89864-506-5.

EXI Working Group (2007), http://www.w3.org/XML/EXI. (Accessed January 2008)

Hess, A., Humm B. and Voß, M. (2006), “Regeln für serviceorientierte Architekturen von
hoher Qualität“, Informatik Spektrum, Vol. 29, No. 6, Springer Verlag, pp. 395-411.

Chapter 4 – Applications and Impacts

269

Josuttis, N. (2007), SOA in Practice, O’Reilly, ISBN: 0596529554.

Krafzig, D., Banke, K. and Slama, D. (2005), Enterprise SOA, Prentice Hall, ISBN:
0131465759.

O’Brian, L., Merson, P. and Bass L. (2007), “Quality Attributes for Service-Oriented
Architectures”, Proceedings of the international Workshop on Systems Development in SOA
Environments, International Conference on Software Engineering, IEEE Computer Society,
Washington, DC.

Richter, J.-P., Haller H. and Schrey, P. (2005), “Aktuelles Schlagwort Serviceorientierte
Architektur“, Informatik Spektrum, Vol. 28, No. 5, Springer Verlag, pp. 413-416.

SOAP Specification (2007), http://www.w3.org/TR/soap (Accessed January 2008).

Wichaiwong, T. and Jaruskulchai, C. (2007), “A Simple Approach to Optimize Web Services’
Performance”, Proceedings of the Third international Conference on Next Generation Web
Services Practices, IEEE Computer Society, Washington, DC

