
SIP Automated Test Platform

Yagmur Kirkagac
Netas Telecommunication Corp.

Marmara University

Electrical and Electronics Engineering

Istanbul, Turkey

Email: yagmur@netas.com.tr

Serdar Simsek
Kocaeli University

Computer Engineering

Human Computer Interaction Lab.

Kocaeli, Turkey

Email: ssimsek@outlook.com

Demir Y. Yavas
Netas Telecommunication Corp.

Istanbul Technical University

Electrical and Electronics Engineering

Istanbul, Turkey

Email: demiry@netas.com.tr

Abstract—IP networks have been becoming more popular
communication infrastructures due to the lower operational
costs in recent years. Mainly, usage of IP networks in voice
services, which is denominated by VoIP (Voice over IP), has
made difference in telephony networks not only the way of the
people’s communications, but also telecommunication companies’
and operators’ solutions. In this scope, IMS (IP Multimedia
Subsystems)/SIP (Session Initiation Protocol) networks have some
challenges for testing processes. Testing and validation of SIP
scenarios in IMS networks can be complex and time consuming
due to the lots of different kind of scenarios with traditional
manual methods. This paper aims to develop automated test
environment for SIP messages. In this perspective, this system
provides to manage SIPp-like XML (eXtensible Markup Lan-
guage) scenario files, which is aimed to support IMS network
nodes with GUI (Graphical User Interface). Automation of SIP
signaling test environment is also implemented for plotting data
automatically.

Keywords—SIP; SIPp; Automated Test Environment; GUI;
VoIP; IMS

I. INTRODUCTION

IMS provides the voice transmission over IP to merge all

networks for IP based communication. VoIP solutions also

use SIP for session management [1], and RTP (Real-Time

Transport Protocol) for multimedia transmissions [2]. SIP is

one of the commonly used protocol for session management

of video and voice transmissions in recent years.

Verification and validation tests are important part of the

product development life cycle and can give an idea about the

quality of the product. Testing can either be done manually or

using an automated testing tool. Manual testing is extremely

time-consuming and error-prone process. It is common expec-

tation that automated testing saves resources and makes testing

process more expedite, efficient and reliable. In addition,

automated testing can be a part of CI (Continuous Integration).

More generally, the correct and efficient mapping between

requirements and test cases and full implementation of them

might be time consuming and difficult to reach [3].

More specifically, testing SIP protocol has some challenges

valid for both manual and automated testing approaches.

Although the text based message format simplifies interpre-

tation messages and message flows; when it is combined

with rich feature set of SIP, dynamic behavior of certain

message headers (such as ”Via” and ”Contact” headers), the

large diversity of header field values, the testing becomes a

complex and error-prone task. In detail, the header parameter

interpretation may differ according to their precise location

within a specific message flow [3].

In the case of sequentially invoked test cases for a specific

user or service, a failure on a test case may lead the SUT

(System Under Test) to inconsistent states that subsequent tests

cases may also fail. This may cause difficulties on determining

actual problems. In this context, the automated testing tools are

needed to recover failure cases (such that sending CANCEL

or BYE SIP messages in order to end the current session as

depending on the phase of the session).

Support for RTP with the test tool is a valuable facility to

be able to verify media path establishment and call scenarios

including SIP-based media servers.

If a test tool supports protocols, such as HTTP (Hyper-Text

Transfer Protocol), SOAP (Simple Object Access Protocol), to

be used change the configuration of the SUT dynamically, it

can be more effectively used in a automated test process.

On manual testing and during the test case development,

CLI (Command Line Interface) might be challenging for

testing process even if it has some advantages. CLI allows to

experienced testers to get in contact with the system as quickly

as possible. On the other hand, CLI has lots of problems for

testers. Supporting GUI does not make only creating test cases

easier but also providing accelerated and efficient testing time.

All these kind of issues with combining some others such

as incorporating with the new additions to specifications and

maintaining also the backward compatibility make providing

a comprehensive test tool a challenging task.

In this paper, we presented a test tool and a test platform

addressing these kind of challenges. The test tool supports

SIPp-like XML-based scenarios, test cases covering test sce-

narios and test suites covering test cases. Supporting SIPp-like

scenarios is selected to capitalize on habits of testers who have

already known about SIPp [4]. Besides, properties provided

by the SIPp approach are extended to provide complex call

scenarios including multi-dialogs and nested transactions. The

test platform provides sharing applied test structures through

a database and reorganization between teams taking role at

Proceedings of the Eleventh International Network Conference (INC 2016)

153



different testing phases such as compatibility testing, sanity

testing, regression testing and acceptance testing, except per-

formance tests which is not assumed for the tool. In this

way, we plan to build a corpus of SIP messages containing

a rich mix of requests and responses across different services.

The presented tool supports sending media stream by using

media files, and it can generate and recognize both inband

and outband (RFC 2388) DTMF (Dual Tone Multi Frequency)

tones through RTP streams [5].

The tool can simulate SIP client and SIP server behaviors

including, but not limited to proxy server, B2BUA (Back-to-

Back User Agent), registrar, SIP media server.

The proposed tool offers the utilization of powerful SIP

test scenarios by using the proposed methodology which is

explained in Section II. The technologies, used in our tool, are

explained in Section III and supported graphical user interface

is explained in Section IV.

II. METHODOLOGY

A. Testing Objectives
As testing is an integrated part of a product development, it

is necessary to perform testing at any phase of the development

life cycle for distinct objectives. Our tool and platform is

aimed for (i) design phase tests (e.g. as an message injector),

(ii) compatibility testing, (iii) sanity testing, (iv) regression

testing, and (v) acceptance testing. It is planned to be used

for reproducing of reported problems and collecting required

debug information at customer sites. The tool is not assumed

for performance tests. The tool can be used for manual testing

as well as integrated with CI for automated real time tests.

B. High Level Design
The high level design of the tool is done by considering the

following criteria:

Simplicity: The tool supports minimal menu options and

configuration details for ease of use in user interface (UI)

design. All test components are movable with drag and drop

design mechanism. The tool is natural design considering

human-machine interactions and user profiles. Testers can

learn without experience the tool easily, and use the system

quickly. New testers become productive in a short time.

Reusability: Our designed tool supports to reuse, change

and improve all test components such as test messages, test

scenarios, test cases to another test.

Portability: Our designed tool allows to run the same tests

with another platforms which are another SIP enabled servers

or clients with simple configuration changes like IP/userID.

Flexibility: All test components can adapt all processes

without cause of any flow damages.

Collaboration: Our tool design encourages the sharing and

collaboration. It allows to share test components with other

testers easily. Testers can search test components not only in

our created library but also other testers working areas.
The high level design components are listed below.

C. Design Components

1) User Login and Credentials: There are user login win-

dow for each tester to sign in. After the tester signing in, they

do not have to memorize the script codes for functionalities

which are founding in RFC. Also they do not have to re-write

the codes over and over again. Testers can try the test scenarios

with the constituted default test cases. Moreover, testers can

add and/or save their specialized test scenarios into the system.

In fact, they can edit or pull the pieces the scenarios. With

this approach the testers can share their experiences about

testing cases and improve their methods. Every user has a

different account in order to accomplish those facts laying

in previous sentences. Test message templates can be edited

only by its creator. Otherwise, a clone is transferred to the

user who is attempting to save. After the clone, the message

will be appeared other users pool.

2) Standards/Specifications: The testing and developing

process in VoIP technologies, is necessary to provide IETF

(Internet Engineering Task Force) and 3GPP standards. De-

signed tool is supported by multiple protocols like SIP, RTP,

SOAP, HTTP [6] and also is used in network transport protocol

layers TCP, TLS/TCP or UDP [7].

3) Platform Independence: For platform independence, the

tool is implemented by using Java and tested on Windows and

Linux OSs.

4) Extendability for Multi-protocol Support: An event

driven core mechanism is implemented as independent of

protocol messages and flows. The event driven mechanism

follows only events defined in the scenario flow such as

message sending, message receiving and time expiry events. A

new protocol definition can bind itself to the core mechanism

to invoke and get events.

5) Multi-agent Support: As multi-agent support, the tool

can form itself as a client or a server as depending on the

first action in the scenario; e.g. if the first action is to send a

request message, it considers a client behavior.

6) Mode of Operation: The tool considers three mode of

operation on message processing. It parses messages according

to SIP ABNF (Augmented Backus-Naur Form) grammar be-

fore sending through SIP transaction and dialog state machine

by default. This is to prevent uncontrolled message structure

and flow errors. The advanced mode controls only mistakes

only message grammar before sending, but not transaction and

dialog states. JAIN-SIP stack [8] is used for these purposes.

The advanced mode uses only the message parser of JAIN-SIP

stack. The more advanced mode does not perform any control

on message structure and flow and it uses an internally devel-

oped stack. This is mode can be used to produce malformed

messages for stress and robustness tests.

7) Test Scenarios Setup: All test scenarios are grouped

under a specific functionality by specific users. Test scenarios

lists can be grown by adding more scenarios from testers. Our

designed tool does not need any configuration to setup for

Proceedings of the Eleventh International Network Conference (INC 2016)

154



Fig. 1. SIP Protocol Stack in a Typical IMS Structure

test scenarios. User can use test scenarios only drag and drop

method.

8) External Tools: Our designed tool does not need any

additional tools for examining tests. It provides a log screen

at the bottom of the window that testers can see messages and

exceptions in this part of the tool. Packet analyzer tools like

Wireshark still can be used for network troubleshooting.

9) Test Scripts: Basic test scripts are developed by in-house

testers which are denominated by admin users in designed

test tool. Other additional test scripts can be specified by

other testers. Stress testing is more difficult without automated

testing tool. Designed tool supports 5 testing types which

are compatibility, sanity, regression and acceptance including

stress testing automation [3].

10) Verification: Creating reliable and functional SIP sig-

naling testing tool is quite challenging. There are lots of

parameters which are depending on protocol failing (when

deployed) even after testing process. Tool design should also

provide verification with automatically. To explain the real-

case example, call establishment stage can be failed in VoIP

testing. Other testing tools do not give any information to

indicate error. Testers spend a lot time for reproducing problem

and identifying error. Designed tool detects any problem when

the call signal is failed in the call process and inform the

tester which stage is failed. By this means, testers can identify

problems easily and fixing time also will decrease.

11) Test Case and Test Suite: Test cases consist of scenarios

which defined a complete test case, such as grouping scenarios

of originating and terminating agents in a test case which can

be invoked at the same time from the same computer. For

flexibility, scenarios in test case can be invoked at the same

time or sequentially. Similarly, a group of test cases can be

grouped into a test suite which can be correspond to a specific

feature or functionality test. Our test suite is designed to run

multiple test cases ordered one by one execution, or a group

of test cases simultaneous.

12) User Friendliness: A well defined GUI (Graphical User

Interface) is considered for user friendliness. The user can

build a test scenario by drag and drop from the entire corpus

provided by the test platform using a database. The GUI

provides facilities for users to edit, re-configure, run tests and

to collect results.

13) Graphical Display: The tool has a graphical interface

providing operational management (OM) statistics for every

monitored network element (NE). The graphical display is sup-

ported by OM data with a specific time interval. In addition, it

plotting graphs with supports available data sets. Thus, testers

not only can detect problems of OM data but also manage

fault performance with using graphical display easily.

14) User Interface: The GUI software testing is promised

to the graphical front-end meets with tool specifications. GUI

software testing must provide not only cover all functionalities

but also ensures that the GUI itself is fully tested.

III. TEST PLATFORM DESIGN TECHNOLOGIES

IMS network structure and SIP Stack structure considered

for the tool is illustrated in Figure 1. The tool can be positioned

as any SIP enabled node in the network such as SCSF, AS,

SBC, SIP GW, SIP Clients [9]. JAIN-SIP and an internally

developed stack are used in the SIP stack level. The internally

developed stack is also used for RTP, HTTP and SOAP.

Designed tool is a desktop application for testers. High level

design is required user-friendly design which is mentioned in

Proceedings of the Eleventh International Network Conference (INC 2016)

155



Fig. 2. Designed Tool Overall System Design

section II-C. It has been developed using JavaFX for building

user-friendly GUI. It is developed with using Model-View-

Controller(MVC) design pattern.

MVC design pattern has three types of objects. There are;

model, view and controller. These objects can handle entity

(data), boundary (presentation) and control (behavior). View

and controller objects compose user interface. MVC model

has useful advantages at runtime such as providing multiple

views, synchronization of views and controllers. Designed tool

is used to model object to operate and implement the logic.

View model object is used to interact with testers. Control

object is used to control the web applications.

The back-end software of the tool is implemented in Core

Java. Database system is developed in LAMP (Linux + Apache

+ MySQL + PHP). LAMP server use script languages such

as PHP, Perl, JSP or ASP. These are quite efficient for quick

learning and deployment. Core Java objects are connected with

relational database MySQL by using Java Database Connec-

tion. In this means, all parameters are placed in relational

database MySQL.

Mapping is one of the most important part in designed tool.

Mapping allows to the testers to map the test cases with users.

In other work, our designed tool allows to semantic search

in library or other users workspaces for test cases. Designed

tool is supported Object Relational Mapping (ORM) design

which is provided a framework for mapping an object oriented

model design to relational database. ORM design is mostly

used with Hibernate. We designed unique ORM framework

design for mapping objects to relational database. Original

ORM framework design was carried out in this tool.

Designed tool overall system schema is illustrated in Figure

2. Our tool supports multi-protocol (SIP-RTP-HTTP-SOAP) in

the same scenario. Testers can search libraries and other users

workspaces with semantic search method.

Race condition problems, which may not be reproducible in

real time, can be created by the with extending test scenarios

by adding timers.

IV. GRAPHICAL USER INTERFACE

The GUI has been developed in JavaFX for improving

the user-interface experiences. User account is an important

parameter which is provided sharing, utilization of scripts in

designed tool, in that scope testers can learn and drive testing

processes much more easier way. In this section, designed

tool sample screens will be shown and will be given brief

information.

The tool provides a user login screen. Testers create an

account first. The tool allows to semantic search for test

scenarios searching in our created library or other testers

workspaces. Testers can define their SIP messages with filling

special fields. Admin users can also share messages in the

library as a template. Other testers can also add created test

objects into the library as a template, after verifications. If

testers do not share their test objects to the library, test objects

can be visible on only themselves workspaces. However, our

semantic search also allows to find test objects even testers do

not share to the library. All test objects can use with cloning

testers workspaces.

Template messages can be added another users pool. The

user can change the messages and save specialized message to

own pool without any changes in original template messages.

We also implemented chat screen for providing a communica-

tion of testers about testing processes and templates. Figure 3

Proceedings of the Eleventh International Network Conference (INC 2016)

156



Fig. 3. Designed Test Environment Test Suite Example

shows our designed test environment which is supported with

basic call and call hold test suite example.

The tool plotted graphics depends on customer data auto-

matically for catalyzing the analysis. It also allows to add

another features in graphics for making easier to comparisons

and analyses. System can analyze two or more parameters in

the same graph for making easier to comparison.

V. CONCLUSION

In this paper, we present our automated SIP testing tool

and platform with solutions for SIP testing problems. These

problems are solved with supporting multi-protocol structure,

multi-platform computing methods, complex SIP call scenar-

ios, user friendly and collaborative GUI design. All of our

solutions consider not to change users’s habits but simplify.

For this reason, our tool design supports XML syntax which

has already known by testers. Our designed Test Case and

Test Suite structure can handle complex SIP call scenarios by

running the organized more than one test scenarios sequen-

tially. The tool supports protocols such as HTTP and SOAP

for changing the configuration of the SUT during the tests,

dynamically. The tool consists of an user-friendly GUI design.

Drag and drop feature simplifies the usage and learning the

tool. It plots graphs from data and runs the stored scenarios

from the library which is shared other tester’s scenarios pool.

These are the advantages for the cases which have to be

analyzed and tested immediately.

In the future works, our tool can be expanded for involving

all IMS network protocols by adding features such as support-

ing Diameter protocol and RESTFUL services. In addition, we

desire our tool behave as a traffic tool with supporting complex

call scenarios.

ACKNOWLEDGMENT

This project has been supported by Netas Telecommunica-

tion Corporation.

REFERENCES

[1] J. Rosenberg et al., SIP: Session Initiation Protocol, RFC 3261, June
2002.

[2] H. Schulzrinne, et al., RTP: A Transport Protocol for Real-Time Appli-
cations, RFC 3550, July 2003.

[3] D. Goncalves, A. Amaral, A. Costa, P. Sousa, ”Towards Automated Test
and Validation of SIP Solutions”, Telecommunication Systems March
2016, Volume 61, Issue 3, pp. 579-590.

[4] SIPp development team, ”SIPp - SIP performance Testing Tool” [online]
Available: http://sipp.sourceforge.net/.

[5] L. Masinter, Returning Values from Forms: multipart/form-data, RFC
2388, August 1998.

[6] P. Subramanian, B. PG, ”Convergence of Java EE and SIP in IMS
AS”, IP Multimedia Subsystem Architecture and Applications, Int. Conf.,
Bangalore, 2007, pp. 1-5.

[7] M. Ranganathan, O. Deruelle, D. Montgomery, ”Testing SIP Call Flows
Using XML Protocol Templates”, TestCom’03 Proc. of the 15th IFIP Int.
Conf. on Testing of Communicating systems, pp. 33-48

[8] The Source for Java Technology Collaboration, ”JAIN-SIP Stack” [online]
Available: https://jsip.java.net/.

[9] M. Poikselka and G. Mayer, ”The IMS: IP Multimedia Concepts and
Services”, 3rd Ed., Wiley, 2009.

Proceedings of the Eleventh International Network Conference (INC 2016)

157


