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Abstract—Anomaly Detection Systems aim to construct
accurate network traffic models with the objective to discover
yet unknown malicious network traffic patterns. In this pa-
per, we study the use of the same methods in order to create a
covert channel which is not discovered by Anomaly Detection
Systems and can be used to exfiltrate (malicous) traffic from a
network. The channel is created by imitating current network
traffic behaviour as detected by passive network analysis.
Moreover, we present methods for calculating thresholds for
the bandwidth of the channel such that, with high probability,
the resulting traffic falls within the margins of the Anomaly
Detection System under consideration. We also present re-
sults of practical experiments with commonly used Anomaly
Detection Systems showing the practical applicability of our
approach.
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I. Introduction

Since the initial scientific publication of Dorothy Den-

ning [1], the popularity of Aonmaly Detection is constantly

increasing. Also, methods to subvert such systems have

been proposed. Today, attackers utilize sophisticated heuristic

algorithms and statistical methods in order to prevent the

detection of their activities by ’Intrusion Detection Systems

(IDS)’ and network-based Anomaly Detection. One possibility

to prevent detection is a so called ’Mimicry attack’ which

aims at mimicking legitimate user behaviour in order to

bypass intrusion detection systems and to evade discovery.

The objective of these technqiues is the unrecognized infil-

tration (e.g. malicious code) and exfiltration (e.g. sensitive

information) of data using ’Covert Channels (CC)’. Jaskolka

[2] defined them as: "(...) any communication channel that can

be exploited to transfer information in a manner that violates

the system’s security policy". Thus, ’Mimicry-Attacks’ are a

special case of a ’Covert Channel’. In this paper, we assume

that an attacker (or malicious insider) has already gained

access to a victim’s device including unrestricted access to

network traffic and study the possibilities of hiding the

attacker’s traffic from detection by an Anomaly Detection

System through mimicking legitimate traffic. As we will

show, covert channels which perform even well enough to

hide Botnet Command & Control traffic can be created,

particularly if the methods used by the Anomaly Detection

System are known.

The remainder of the paper is organized as follows. First,

we present an overview of SnortAD and its prediction models

for detecting anomalies. Then, we analyze the performance of

covert channels in the presence of such Anomaly Detection

Systems and highlight their limitations to detect covert

channels with artificially generated data. In Section 2, we

describe a practical experiment we conducted. By using the

same prediction models as the target system, only acquired

by passive traffic capturing, we calculate a traffic profile

below the thresholds of the Anomaly Detection System and

demonstrate that, indeed, the Anomaly Detection System

does not report any anomalies.

II. Related Work

Anomaly Detection [1], has been been continuously ex-

panded and improved. Two productivly used systems are

SnortAD [3] and PHAD [4]. To the best of our knowlege, a

performance evaluation of covert channels mimicking normal

traffic based on packet rates and the introduction of a method

to ensure that covert channel traffic does not exeed the

threshold of an Anomaly Detection System has not been

under investigation before.

Wendzel et al. [5] presents a recent overview of covert

channels. There are also several detection methods, such as

Reyes et al. [12] or Cabuk et al. [13] methods based on packet

timings. Mimicry Attacks were first investigated in Wagners

[6] work, who introduced ’Anagram’. The IDS ’Siren’ [7]

analyses how to find mimicry attacks by injecting human in-

put into traffic, Pukkawanna et al. [8] uses a Kullback-Leibler

(KL) divergence-based method on the port/pair distribution

to detect Denial of Service attacks mimicking normal traffic.

Wang et al. [9] detects suspicious payloads which mimic

normal packet content with high-order n-grams. Casenove

et al. [10] conducted a mimicry attack with covert channels

by a so-called Polymorphic Blending Technique in order to

exfiltrate data from a network. Wright et al. [11] is using a

technique similar to the mimicry attack to prevent statistical

analysis and extend the users privacy.

III. Method

To perform realtime Anomaly Detection in productive en-

vironments, Snort utilizes the preprocessor module SnortAD.

In absence of other reliable solutions, we decided to use

this well-known combination as a base for our experiments.
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In the following, we address the mechanics of Snort and

SnortAD with focus on the used AD models and most notable

facts. We propose a theoretical background to infer the

performance of payload injection in a covert channels and

uncover weaknesses and limitations of Anomaly Detection

affording to unveil those. We close this section unfolding

to what degree we can utilize these findings improving the

mimicry attack.

A. Snort and SnortAD

The rationale behind Snort is simple: A dedicated Snort

host running in ’Single Sensor Mode’ receives copies of all

transported packets within the observed target network. At

runtime these packets are passed through the preprocessing

engine, enabling SnortAD to perform mandatory actions and

raise alarms on occurrence of potentially anomalous network

behavior. SnortAD can log packet volumes of several well-

known protocols such as ARP, TCP, or DNS by fixed time

intervals into a logfile. For each protocol, the total number

of packets, bandwidth, amount of transferred bytes as well

as the flow direction is collected and stored as a vector. The

logfile is essentially a continuous set of vectors, representing

a time series over several intervals. With a sufficient amount

of data, the logfile can be used to predict future traffic with

one of four different prediction models, described in the next

subsection. These prediction models calculate and store a

so called ’Confidence Band’ - a minimum and maximum

value representing the expectation for future traffic - for each

protocol in an so called ’Profile’. After the generation of such

the profile, SnortAD can be utilized to recognize anomalies

outside the predicted Confidence Band.

B. SnortAD Prediction Models

Here, we briefly detail the working principles of the

prediction models. SnortAD Profiles contain a list of pre-

dicted min/max packet volumes for each observed protocol,

which is a effective and lightweight manner of storing

and examining results. However, the aggregation also leads

to various negative consequences as demonstrated in our

practical evaluation. Depending on the underlying algorithm,

a hostile machine could misuse this behavior to conduct a

covert channel for data exfiltration.

Since SnortAD is a volume based Anomaly Detection

System, meaning that any anomaly is based on extra ordinary

packet volumes, we can define that an covert channel is

successful when we can hide a Message M in an N -

length packet communication without exceeding SnortAD’s

Confidence Band. SnortAD uses historical data to calculate

a time series prediction of the next incoming packet fre-

quencies. Which means, it measures at regular and discrete

time intervals Δt the number of packets p1, p2, ..., pn ∈ N

where pi is the measurement taken at ti = ti−1 + Δt. The

chosen prediction model possesses major importance for the

resulting detection accuracy. In the following subsection we

briefly describe the used prediction models of SnortAD.

TABLE I
Notation in this Paper

Symbol Description
pi Number of Packets on measurement i
ti Starttime of window i
α smoothing factor for level
β smoothing factor for trend
γ smoothing factor for season
δi parameter for autoregression

1) ’Moving Average’ model (AVG): The ’Average’ prediction
model transforms the data represented in the logfile into a
prediction model defined by arithmetic mean packet counts
p̄ for a moving window of size k within the logdata.

AV Gi =

∑i−1
j=i−k pj

k
(1)

Depending on the chosen size for the window, the weight

of an individual outlier shrinks or grows. In that sense

the model has no effective method to eliminate artifacts,

negatively influencing the prediction result.

2) ’Holt-Winters’ Prediction (HW): The ’Holt-Winters’
model applies exponential smoothing to the supplied data
and can be seen as an addition to the ’Moving Average’
technique. It is used to smoothen the predicted values in
a way, that the effect of collected outliers are lowered. To do
that, the algorithm needs an scaling factor greater or equal to
1. A scaling factor of 1, produces just the given input as result
and higher values will emphasize the distance between the
resulting minimal and maximal values, effectively enlarging
the region of accepted or normal network traffic. The major
benefit of using this method is, that it does not need a
minimum amount of input values and already works as
expected with at least two observation points. The additive
Holt-Winters model breaks the time series into level Li (an
approach to remove noise by subtracting the season), trend
Pi (a forecast of changes in the level) and season Si (an
index for the expected level at ti), and smooths each of the
components with its own constant α, β and γ in range [0,1].

HWi = Pi + Li + Si (2)

Pi = β(Li − Li − 1) + (1− β)Pi−1 (3)

Li = α(pi − S(i− k)) + (1− α)(Li−1 + Pi−1) (4)

Si = γ(pi − Li) + (1− γ)Si−k (5)

3) ’Brutlag’ Prediction (BL): The ’Brutlag’ method utilizes
the ’Holt-Winters’ model to provide predictions. This method
compares actual data of the last period with fitted ’Holt-
Winters’ values for the same point of time [3]. This technique
tries to equalize the impact of seasonality, by utilizing the
trend of past periods:

BLi = HWi +m · di−k (6)

, where d is a predicted deviation and m a scaling factor.

This type of prediction is also able to distinguish between

different kinds of periodicity, e.g. daily or weekly and

introduces therefore a more general prediction, less prone to

outliers and singular events. The result is then again scaled

with an scaling factor suggested to be chosen between 2

and 3.
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4) ’Autoregression’ Prediction (AR): The ’Autoregression’
prediction method utilizes linear regression for variables
and their past values and predicts an error value, which
is used to define the upper and lower border of a future
Confidence Band. Therefore the method compares actual data
of one observation point, compared to all past observations
of the same period and category. In the context of SnortAD
this model tries to emulate the past behavior and occurred
patterns. The model accepts a scale factor passed as input
variable which will not affect these patterns but will change
the scale of the series itself. This approach is therefore also
not aware of outliers and seasonal effects. We forecast each
point using a linear combination of past values, where δ
denotes a parameter to affect the output.

ARi = δ0 +

k∑

j=1

δjpt−j (7)

All models above conduct a time-series analysis and oper-

ate on a given set of input data and at least a scale factor as

parameter. They are in general agnostic to any semantics of

the analyzed data and they are all prone to singular events,

such as outliers.

C. Limits for Payload Injection in a Covert Channel

In the last section we described the general working

principles of all models used by SnortAD. Despite the fact,

that every algorithm has it’s own purpose and objective, they

still have a common vulnerability to covert channels. This

limitation is exemplary described on the ’Holt-Winters (HW)’

algorithm, but the given assumptions hold for the other

prediction algorithms as well. Hereinafter, we provide the

theoretical background of traffic mimicking attacks against

SnortAD and describe in which way methods for data exfil-

tration could be determined.

Based on the output curve of a HW model, SnortAD

calculates two thresholds for each category of network traffic

– a minimum and a maximum – simply be subtracting

and adding the standard deviation multiplied with a scale

factor from the training data d. We reconstruct this Anomaly

Detection method to check the theoretical performances.

Based on these experiments we can estimate the maximum

rate of hidden transmission for M .

For an initial experiment we can generate a random set of

normal distributed data and use the Holt Winters Algorithm

to reproduce a smoothed curve as a prediction of the future

50 values. Figure 1 shows a data set with N = 10000,
μ = 100 and σ = 0.1. The learned data is black, while the

output of the Hold Winters prediction grey dotted. Figure

2 shows a detailed view of the Holt Winters prediction,

including the minimum and maximum range, calculated with

a scale factor of 1 and the standard deviation of the original

data. Note, that the minimum and maximum range would

also appear in all other SnortAD models, the used model

only affects the trends based on the previous input.

The advantage of a time series prediction in contrast to

threshold values based on average frequencies is the adaption

to daily and weekly traffic trends. The netflow traces in

Fig. 1. Normal distributed test data and Holt Winters prediction

Fig. 2. Holt Winters prediction and min/max range

Figure 3 have been captured on a German medium sized

ISP and show the typical traffic trends for one week. The

y-axis shows the amount of flows, the x-axis is the time (24

hours). Each circle shows the amount of netflows for one

minute, while the dotted line shows the mean amount of

flows. Another typical behavior is the change of variance in

the amount of traffic.

This fact is interesting, because SnortAD relies on the

standard deviation to calculate the thresholds. However, the

min/max ranges are consistent throughout the complete pre-

dicted interval. Hence, the high variance areas also increase

the ranges for low variance intervals. Figure 4 shows two

generated time series, where the black curve represents

10.000 points of learned data and the bright curve represents

the predicted min and max areas for the next 5000 values

calculated with the Holt Winters model. The area of high

variance only affects the global min/max range of the output.

As the authors of SnortAD did, we define the region between

all minimum and all depending maximum values for a given

set intervals as ’Confidence band (CB)’ [3].

We can conclude, that these drifts from low to high
variance either produce false positives or bloat the min/max
range unnecessary which provides target for malicious traffic.
In that sense, we define values, exceeding thresholds and
generating false positives, as outlier. Based on the mean-value
μ and standard deviation σ of the training data d, an outlier
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Fig. 3. Daily traffic trends (Tue-Fri)

Fig. 4. Holt Winters prediction with and without a high variance area

o is any value included in the following set (8):

o ={p|p > μ+ σ} ∧ {p|p < μ− σ} (8)

Based on this conclusion, we calculate the minimal scale fac-
tor to ensure that SnortAD does not produce false positives.
A naive approach to calculate the scale factor would be to
use the distance to mean from our global extrema. Using
the highest absolute value (11) calculated from the maximal
positive (9) and negative (10) distance to the arithmetic mean
x̄ of the training data d, we can use the standard deviation

s (12) to receive the scale factor.

maxDistpos = max(d)− x̄ (9)

maxDistneg = min(d)− x̄ (10)

maxDist = max(|maxDistpos|, |maxDistneg|) (11)

sf =
maxDist

s
(12)

The scale factor sf depends upon outliers, or more precisely

the distribution of values. The effect of skewed distributions

on standard deviation and arithmetic mean is well known.

Figure 5 shows how many values are within the allowed

area (mean +- standard deviation). If the distribution is more

skewed we observe less outlier, which are the further away

from our allowed area.

To conclude this section, we summarize that the examined

algorithm (HW) provides in general an upper and lower

border (min/max ranges) for future values, received from a

scale factor and an input set of intervals, containing observed

packet amounts. These future min/max ranges are used by

SnortAD to distinct between an legitimate or anomalous

traffic amount and the distance between a min and max value

is negatively influenced by singular events in the input data.

To compensate that, the underlying scale factor has to be

adjusted accordingly, in order to ensure that all legitimate

values remain inside of the predicted min/max range for a

given interval. Therefore a naive approach to determine an

appropriate scale factor was given, including a description of

the implications for inappropriately chosen scale factors.

D. Exploiting limitations of prediction models

The last part of this section, we focus on the implementa-

tion and practical evaluation of our observations. We present

a method to calculate a packet volume threshold for a hidden

message to in order to be unnoticeable. To do that, we detail

considerations of network administrators and show how to

calculate the estimated duration and bandwidth for a covert

channel with fixed message length.

Since an attacker trying to evade detection by an IDS, can

use our described drawbacks to his advantage, we assume

a scenario where an malicious insider wants to exfiltrate

sensitive data from the victim network to the outside without

being noticed by SnortAD. We also assume that an already

infected host can collect the same network traffic as the

Snort sensor does. In contrast to the administrators of the

victim network, which have to consider their specific de-

mands when they choose prediction model and parameter,

an attacker could, instead of guessing the correct algorithm

and scale factor, easily create profiles for all available models

and choose very restrictive or conservative parameter. Since

the predictions are essentially min/max ranges for future

time series, the administrators have to provide scale factors

resulting in confidence bands, which are large enough to

accept all legitimate traffic (including legitimate outliers)

without triggering false-positive alarms. Furthermore, they

need scale factors to be small enough to only accept the

legitimate traffic. In our initial experiments we have chosen
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Fig. 5. Outliers in contrast to distribution

rather restrictive scale factors of 1.3 (AVG, HW, AR) or 2 (BL).

In the previous section we also explained, how a reasonable

scale factor could be predicted more realistically. Since we

can guess the necessary scale factor conservatively, we are

in the situation to generate profiles for all used algorithms

and combine them to a fifth ’Covert Channel profile (CCP)’,

containing the minima of all MAX-values as well as the

maxima of all min-values. Through this combination we

obtain a confidence band in which we most likely can send

data without conflicting the rules of the observing IDS. This

is the case, since the administrators definitely have chosen

one of the four provided algorithms and most likely have

chosen a scale factor larger than ours, in order to avoid false

positive alerts. If that is the case, and the attacker is still able

to monitor the current network traffic, he can choose the

desired protocol as well as a given message for exfiltration

and utilizing the created CCP to exactly determine when

he can send unnoticed packets to our destination and how.

The amount of packets which can be send, is obtained by

subtracting the packet counters of the involved protocol

categories from protocol categories in the CCP. For a message

of fixed size, the attacker can then calculate the estimated

duration and necessary packet counts for a undetected data

exfiltration.

IV. Results

For the following evaluation, we created a virtual target

network - including an malicious host, a snort sensor and

a gateway connected to the Internet - to prove and verify

our assumptions. We generated a symbolized normal com-

munication of our virtual environment, in the further section

referred to as background traffic, by on-the-fly re-injecting

prerecorded traffic samples. This artificial background traffic

has been used during the conducted learning phase of Snor-

tAD. The resulting profiles for all available algorithms (see

Section 2) were obtained with a scale factor of 2 and a daily

periodicity over a total period of four weeks. Altogether, we

conducted three tests containing low (’Set 1’), medium (’Set

2’) and high (’Set 3’) variance background traffic, which was

created by re-injecting the prerecorded traffic samples with

differing sending rates. According to our defined scenario, the

malicious host captures the same traffic as the snort sensor

to process an equivalent model of network traffic in order

to secretly exfiltrate sensitive data to an controlled host on

the Internet. We proceeded to this scenario by creating a

combined profile of all implemented algorithms. Using the

method described in the previous chapter, we obtained a

conservative scale factor of 1.3 on the malicious host, which

was used to predict future send rates over a length of 60

seconds. In consonance with the captured background traffic,

our protocol of choice to establish the covert channel was

HTTP, which was abundant and showed a reasonably high

variance in terms of sending rate and total amount of send

packets.
Table II provides the obtained average min/max packet

counts over a period of 28 days for each test set, as well as the

utilized network bandwidth. As can be seen, the total amount

of packets, as well as the utilized bandwidth roughly doubles

with each set. Table III shows an excerpt of the SnortAD

TABLE II
Captured packets counts and traffic utilization

Total #Pkt HTTP #Pkts HTTP Up HTTP Down
Set1 9079-9277 8768-8921 12.4-12.6 KB/s 46.6-47.9 KB/s
Set2 9250-18078 8913-17432 12.6-24.6 KB/s 47.5-93.3 KB/s
Set3 9242-736039 8984-34674 12.6 48.9 KB/s 47.5-186.5 KB/s

profiles, the average minimum and maximum packet counts

for the category ’HTTP’ defining the confidence band for

each algorithm (Section 2) are used by the snort sensor to

determine anomalous behavior. In that sense packet amounts

lower than the min-value or higher than the max-value, will

be considered as anomaly and lead to a preprocessor alert

inside snort. Table IV shows the combined profile as created

by the malicious host. To obtain the minimal Covert Channel
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TABLE III
Snort sensor algorithm predictions (HTTP)

AVG HW BL AR
Set1 8605-9074 8605-9072 8601-9074 8606-9073
Set2 3851-17120 2909-19248 4634-17559 9528-17122
Set3 0-56153 0-56201 0-17823 0-56099

Profile (CCP), we simply choose the highest minimum value

and smallest maximum of each interval and all of the above

algorithms. The amount of packets per interval predicted for

the CCP, represent the upper and lower border of a corridor

in which an attacker can most likely send undetected traffic.

These borders were obtained by scaling the CCP down to 10

percent. The ’Center’ of the Covert Channel Profile, which is

the maximum amount of packets the malicious host sends, is

defined by subtracting the min-value from the max-value and

through the division of the result by two. Defining a fixed

message size of 1MB as exfiltration data and by assuming a

payload of 1000 bytes per send packet, we can calculate the

time needed to transfer a Message M via our covert channel.

Recapitulatory, our results show that an malicious insider is

TABLE IV
Combined profile and Covert Channel Prediction for 1MB Message

(HTTP)

Combined Covert Channel Center Duration
Set1 8726 - 8954 872 - 895 3 9.38h
Set2 6931 - 14355 693 - 1435 248 0.13h
Set3 34700 - 40051 347 - 4005 524 0.03h

able to find a sufficient confidence band (CB) to extract traffic

unseen. The maximum performance of the covert channel

is predfined by the variance in the underlying traffic and

influences the required time to send all data. Since we can

assume at least a decent variance in most protocols, we

assume that an attacker is always able to find such a channel,

given that the time is not a critical factor for the exfiltration.

The proper knowledge of actual payload data is not essential

to perform this operation, since SnortAD is merely a paket

counter, solely relying on statistical data obtained from the

network, not taking into account the semantics or payloads

of transported data. Therefore an attacker has to mimick only

the bandwidth of the monitored network and does not have

to care about actual contents of single packets. In that sense,

the creation of such an covert channel is also possible on any

other network protocol (e. g. HTTPS, SMTP, FTP) , providing

enough variance at a given time window.

V. Conclusion and Future Work

Many Anomaly Detection Systems rely on the assumption

that malicious traffic is different from the norm. A sophisti-

cated stealthy attack, such as our proposed mimicry attack

can be very challenging to detect. Our aim was to study

how efficiently mimicking traffic can hide covert channels

from Anomaly Detection Systems. We showed that we can

indeed easily hide traffic. We outlined the mechanics of the

Anomaly Detection Plug-in SnortAD and concluded how

the variance of legitimate network traffic can negatively

affect the confidence band. We detailed how to exploit

this weakness by calculating how much additional volume

of network traffic can be send unseen and were able to

estimated duration and bandwidth for a covert channel with

fixed message length. Our results showed that even small

networks offer enough variance to easily hide data equivalent

to several HTTP pages, which is sufficient to hide botnet

command and control traffic, within a small amount of time.

Since SnortAD is based purely on packetcounts, we did

not focus much on our method to inject specific payloads.

However, we assume that the mentioned techniques are not

only possible within the HTTP protocol, but also within

encrypted protocols such as HTTPS. Therefore we state, that

the time to transport hidden messages is in fact the only

constraint to conduct such an attack successfully. We are well

aware that our exemplarily used Anomaly Detection System

SnortAD represents only one of many possible systems but

we are confident that other systems can be circumvented

in a similar way whenever someone with malicious intend

has the same network insights as the Anomaly Detection

System and other mitigation methods are not implemented.

While we deliberately wanted to keep the initial experiment

simple and representative for a wide range of network traffic,

a future prospect is to evaluate this approach in industrial

environments and the associated protocols which are lately

threatened by ’Advanced Persistent Threats (APT)’ such as

stealthy botnets and other malware.
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