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Abstract—Information is crucial in the military area, how to
purify the obtained information and improve its quality is of
great significance. This paper aims to shed some lights from the
perspective of target operation network topology reconstruction.
First, formalized it as a TON structure reconstruction problem;
then proposed a link reliability index, named LR, based on which
to identify the spurious edges and predict the missing edges;
a greedy algorithm based on LR was designed to reconstruct
the observed network; finally, experiments on the public data
validated the effectiveness of the reconstruction algorithm, the
reconstructed network is closer to the true network in nine
topological indexes, including clustering coefficient, assortativi-
ty, congestion, synchronization, propagation threshold, network
efficiency, betweenness mean standard deviation and natural
connectivity, compared to the observed network, which means
our reconstruction algorithm could narrow the structural gap
between the observed network and the true one.

I. INTRODUCTION

In real battle field, however advanced and excellent the

reconnaissance means and information collecting works are,

it’s still rather difficult to guarantee the information to be

100% accurate due to some objective or subjective reasons.

In sensitive area, like military battlefield, a small error might

cause a huge catastrophe to the outcome of a battle, therefore,

a scientific method to refine the information from the battle and

to make it a further step closer to the truth before putting them

into real uses will be of significant importance for commanders

to hold the battle situation, make operational plans, and make

decisions. Analysis of the battle field information processing

from the perspective of target operation network could be

described as the problem of TON structure reconstruction,

more specificially, abstract a observed target operation net-

work from the information collected, refine the network by

identifying the false information and predicting the missing

information and thus obtain reconstructed network closer to

the truth than the observed one, so as to lay the foundation for

the following central analysis based on network topology. This

paper proposed a link prediction based reconstruction model

for target operation network based on FINC operation network

model, to meet the practical demand of real situations.

FINC is the abbreviation of Force, Intelligence, Networking,

C2(command and control)[1][2][3][4][5]. In the process of

modeling, triangular nodes represent intelligence units, such as

radar, and rectangular nodes stand for operational units, such

∗Correspondence to: baoxinxiu@163.com

as missile positions, and the circular nodes indicate command

and control units, such as command post. Meanwhile, the edge

of the network is used to represent information transmission

links, which can be both direct and indirect, edge weight

represents the information transmission time delay. Thus we

may agree that military system or military network model

based on FINC model is able to analyze indexes such as

system information delay, reconnaissance performance and

synergy ability. The existing FINC model is a military network

model based on social network theory, nodes in which could

have different properties and structures, meanwhile it’s also a

well-behaved method to analyze military network’s command

and communication capability.

Link prediction refers to a prediction of existing probability

of nonexist edges in the network[6][7][8]. In the area of

computer science, many studies have been conducted on link

prediction[9][10]. Exterior information, logically speaking,

may obtain higher accuracies, yet the access to those infor-

mation is difficult to get. Recently link prediction based on

network structure has been a heated topic[6][7][8]. It’s easier

and more reliable to obtain the network structure information

than the exterior information, meanwhile network structure

based methods are more generative. Current methods can be

divided into two main parts according to the prediction the-

ory: similarity based methods and likelihood based methods.

Similarity based methods also divide into local information

based methods, path based methods and random walk based

methods, likelihood based methods divide into hierarchical

structure models and stochastic block models. All in all,

the effect of link prediction based reconstruction methods is

mainly determined by link prediction index chosen. Current

link prediction indexes are mainly based on the network

topology, for two main reasons, one is the easy access to

the network topology information, the other is the satisfactory

prediction accuracies of them. Of course there is little evidence

shows the combination of exterior information could lead to

worse prediction. Provided that the obtained information is

correct enough, it’s true that the more the available information

is, the closer it will get to the truth.

The remaining parts of this paper is arranged as follows:

Section 2 formalize the problem this paper aims to address;

Section 3 model the link reliability, and proposed the LR in-

dex; Section 4 put forward a local greedy search algorithm for

TON structure reconstruction; Section 5 conducts experiment
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on the public dataset, and validates the algorithm proposed

before. The last section conclude the paper.

II. PROBLEM FORMULATION

A target operation network G(V,E,A,L) , where V s-

tands for a set of nodes, E indicates edges, A is a set of

node types, including C2 nodes, fire nodes and information

nodes;L stands edge types, including reporting relationship,

command relationship, and communication relationship; The

problem of TON reconstruction task is to find out a strategy

{Emising, Espurious} , and obtain maxR(G + {Emising} −
{Espurious}), here {Emising},{Espurious} represent missing

edges and spurious edges respectively, R() is the calculation

of TON reliability.

How to identify the spurious edges and predict the missing

edges, and how to determine each number to obtain the optimal

TON reliability, is the core problems we are to address in this

paper. Inspired by link prediction research, this paper proposed

link prediction based method for TON structure reconstruction.

Three definitions are given first:

Definition 1. (Link Prediction): Given network G(V,E),
based on the obtained network structure, to predict the oc-
currence possibility f(vi, vj) for those nonexist edges.

Definition 2. (Link Reliability): It refers to the possibility of
whether the link really exists. The higher the reliability, the
more possible that there exists certain kind of links between
two operation units.

Definition 3. (TON Reliability): It refers to the degree of
structure similarity between the observed TON and the real
one.

III. LINK RELIABILITY MODEL FOR TON

As mentioned before, the observed network is a noisy

incomplete network, not all the reliability of the observed

edges are 1, nor the reliability of non-observed edges equal

to 0. In fact, a credibility evaluation for all the edges of

the observed network is needed, so as to provide basis for

the subsequent spurious edges recognition and missing edges

prediction.

While under the circumstance of unknown real network and

other information, it remains a great challenge to calculate

each edge’s link reliability based on the observed network

only. However, for target operation network, the analysis of

its reconstruction should be well combined with the specific

features.

Three hypothesis are put forward before modeling the link

reliability of target operation network:

Hypothesis I: The link connection probability between

between nodes is correlated with nodes type.

There are three types of nodes in TON: fire nodes, command

and control nodes and information nodes. The nodes type do

generate impacts on linking behaviors, for instance, there are

no possible links between fire nodes, which is a reason for

choosing the stochastic block model, for its basic hypothesis

is whether nodes are connected in a network is determined by

the cluster they belong to.

Hypothesis II: The link reliability of the exist edges may

not be 1.

For the observed network contains some noise, i.e., spurious

edges, link reliability of these edges are not 1.

Hypothesis III: The link connection probability between

nodes is correlated with their indirect connection stregth.

Generally speaking, if there are more reachable paths

between two nodes, which means their indirect connection

strength is strong, it is more likely to generate direct con-

nections between these two nodes.

As a resul, this paper takes two factors into modeling,

which are nodes types, represented as T , and nodes indirect

connection strength, represented as S; let R stands for the link

reliability, then

R = f(T, S) (1)

Now the quantitative effects of these two factors on link

reliability evaluation are analyzed as follows:

A. Influence of the node type

This section quantify the nodes types’ influence on link

reliability based on stochastic block model.

Theorem 1: For an target operation network G(V,E,A, L)
, let σx denotes the type number of node vx , and rσx,σy stands

for all of the possible connections between these two types of

nodes. loσx,σy
represents the observed edge numbers between

σx type nodes and σy type nodes. Then link reliability for

{vx, vy} is :

p(Axy = 1|Ao) =
loσx,σy

+ 1

rσx,σy + 2
(2)

Proof of Theorem 1 sees in Appendix.

B. Influence of the network topology

The definition of indirect connection strength between two

nodes is defined as the number of reachable paths between

them. Weight of the path is determined by its length, the

shorter the path is, the bigger the weight is.

Definition 4. (Indirect Connection Strength):Indirect Con-
nection Strength Sxy between node vx and node vy refers to
the weighted sums of the reachable paths with different lengths
between these two nodes.

According to Definition 4, the mathematical expression of

Sxy is given as follows:

sxy =
∞∑
l=1

αl|paths<l>
x,y | = αAxy+α

2(A2)xy+α
3(A3)xy+· · ·

(3)

where α > 0 is an adjustable parameter controlling the path

weight, and |paths<l>
x,y | is the l-length path numbers. When
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α is less than the reciprocal of the maximum eigenvalue of

adjacency matrix A, Sxy can also be expressed as:

S = (I − αA)−1 − I (4)

C. Link Reliability Index

Based on the following three points, we get the following

conclusions by using the simplest form of product:

R = T ∗ S (5)

Firstly, the influences of two factors are all positive, which

means, the higher value T or S is, the higher link reliability

value is;

Secondly, if any value of these two factors is 0, the link

reliability value is 0.

Thirdly, the value of link reliability could be adjusted

through normalization.

Therefore, with formula (2) and (4), the value of link

reliability for vx, vy could be calculated as:

rxy = gxy × sxy =
loσxσy

+ 1

rσxσy
+ 2

× [(I − αA)−1 − I]xy (6)

And we call the link reliability index LR.

IV. TON RECONSTRUCTION ALGORITHM BASED ON LINK

RELIABILITY INDEX

Section 3 put forward the Link Reliability index for TON,

the following definitions of the missing edge and the spurious

edge are given based on this index:

Definition 5. (Missing Edge):The missing edges are those
nonexist edges with higher LR values, referring to the actual
missing edges due to incomplete information.

Definition 6. (Spurious Edge):The spurious edges are those
exist edges with lower LR values, referring to the actual
nonexist edges due to noisy information.

Rank all the edges in TON (including exist edges and

nonexist edges) in the descending order, and identify missing

edges and spurious edges according to Definition IV and IV,

the biggest problem here is to determine the number: the

missing edge number and the spurious edge number. This

section aims to address the problem.

Definition II explains the physical meaning of TON Relia-

bility, here give its calculation:

ReliabilityAo =
∏

Ao
ij=1,i≤j

rij (7)

Formula (7) is the product of reliability of all the observable

links, i.e., the similarity degree of the topology of an observed

target operation network to the topology of a real network is

determined by the reliability of all the observable links; if all

the observable links are more credible, the topology of the

observed network is closer to the real one.

This is a typical combinational optimization problem: so-

lution space is all possible combinations of missing edges

number and spurious edges number, objective function is TON

reliability. Traditional enumeration algorithm is of O(|E|2)
time complexity, which is computational prohibitive for net-

works with large amount of edges. This section put forward

a local greedy search algorithm (1),which is based on the

hypothesis that the number of missing edges equal to the

spurious one.

Algorithm 1 TON Reconstruction Algorithm Based on Equal

Numbers of Missing Edges and Spurious Edges

1: Step 1: Divide the edges in the observed network Ao into two categaries,
exist edges Eexist and non-exist edges Enonexist , calculate each
LR values for all edges,and rank the edges of Eexist in an ascending
order(thus edges ranked higher indicate higher probability of the spurious
edge),rank the edges of Enonexist in a descending order(thus the edges
ranked higher indicate higher probability of the missing edge);

2: step 2: Get each edge from Eexist and Enonexist one by one, eexisti
and enonexist

j , reliability values are rexisti and rnonexist
j respectively,

calculate δ = rnonexist
j /rexisti ;

3: step 3: If δ > 1 , means the reconstruction strategy (remove the
spurious edges eexisti and add the missing edges enonexist

j ) increases
the reliability of TON, thus accept it; drop it if not, and repeat Step 2;

4: step 4: Repeat the previous three steps until the continuous drop number
reaches 5, stop the algorithm.

As a local greedy search algorithm, Algorithm 1 just output

a near-optimal solution, and it is based on the assumption that

the number of missing edges equals to the spurious one, which

is always not accurate in reality. As a result, a more reliable

reconstruction algorithm deserves a further research.

An incomplete target operation network with noise can be

refined after Algorithm 1, its topological structure is recon-

structed to be closer to the real one, which is beneficial to the

subsequent analysis based on TON topology.

V. EXPERIMENTS

This section validates the effectiveness of algorithm 1.

A. Data Description

A public reported data is chosen as the experimental data.

It contains 89 entities, including 12 C2 units, 26 fire units

and 51 information units, and 150 observable links,including

16 F-I(Fire-Information) links, 26 F-C(Fire-C2) links, 51

I-I(Information-Information) links, 30 I-C(Information-C2)

links and 17 C-C(C2-C2) links, the relationship of these

entities are shown as Figure 1.

Among them, blue nodes represent C2 units, such as control

center and command post; red nodes stands for fire units,

such as various missile positions; green nodes represents in-

formation units, such as various optical fiber stations and radar

stations. Edges with different colors stand for different types

of links, purple edges stand for optical fiber communication

links, red edges represent command and control links and blue

edges stand for reporting links.
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Fig. 1. TON Topology of the Experimental Data

B. Evaluation Indexes

Before evaluating our method’s ability in reconstructing

TON structure, there is a basic hypothesis here that the

experimental data is the real battle field situation, this paper

made it as the true network, and assumed the observed network

by randomly adding or removing some edges. Evaluation

indexes are put forward to quantify the algorithm’s ability in

narrowing the structure gap between the reconstructed network

(from observed network) an the true one.

1) Evaluation Index for Link Reliability: For an observed

network AO, calculate each edge’s LR value (including both

exist edges and nonexist edges). When evaluating algorithm’s

ability in predicting missing edges, divide all the nonexist

edges (AO
ij = 0) into two types, one is the missing edge N01

(AO
ij = 0, AT

ij = 1); the other is the true nonexist edge N00
(AO

ij = 0, AT
ij = 0). Now randomly select one edge in N01

and in N00, if the edge from N01 has a higher LR value than

the one from N00, add one score; if two values are equal,

add 0.5 score. After comparing ||N01||× ||N00|| times, if one

score exists n′ times, and 0.5 score exists n′′ times, we got

n′+0.5n′′ scores, the algorithm’s ability in predicting missing

edges is calculated as:

AUC Missing =
n′ + 0.5n′′

||N01|| × ||N00|| (8)

Similarly, the algorithm’s ability in identifying spurious

edges could be calculated as:

AUC Spurious =
n′ + 0.5n′′

||N11|| × ||N10|| (9)

where N11 (AO
ij = 1, AT

ij = 1) represent true exist edges;

N10 (AO
ij = 1, AT

ij = 0) represent spurious edges.

Obviously, if all scores are generated randomly, AUC ≈ 0.5
. Therefore, AUC value measures the extent our LR index is

superior to other link prediction index.As a matter of fact,

AUC is equivalent to Mann-Whitney U statistical test and

Wilcoxon rank-sum statistical test[11] in its form.
2) Evaluation Index for TON Reconstruction: How to

measure the structural gap between the reconstructed network

AR and the true network AT , reference [12] utilized five

network structural indexes, clustering coefficient, assortativ-

ity, cogestion, synchronization and propagation threshold re-

spectively. Here we adopted four more topological indexes:

network efficiency, average betweenness, betweenness mean

square deviation and natural connectivity. Following are the

further explanations of them:
Network efficiency[13]: L = 1

N(N−1)
∑

i≥j
1

dij

, defined as

average reciprocal of the distance between any two nodes,

reflecting the network connectivity;
Mean betweeness[14]: B = 1

N

∑N
i=1 bi, defined as the

average betweenness for all nodes, reflecting the network

congestion;
Betweenness mean square deviation[15]: σ =√
1
N

∑
i(bi −B)2, defined as the mean square deviation of

the betweeness for all nodes;
Clustering coefficient[14]: C = 1

N

∑N
i=1

Ei

1/2ki(ki−1) , de-

fined as the average connecting ratio of neighboring nodes in

the network, reflecting the clustering degree of nodes in the

network;
Assortativity[16]][17]:

r =
W−1 ∑

k ukvk−[W−1 ∑
k a/2(ukvk)]

2

W−1
∑

k
1
2 (u

2
k+v2

k)−[W−1
∑

k 1/2(uk+vk)]2
, where uk, vk

are the two nodes’ degrees of the edges k, W the total edge

number. Value of r ranges between [-1,1], when r > 0,

the network is assortative; when r < 0, the network is

disassortative; and when r = 0, the network is not related.

|r| reflects the assortativity degree of networks.

Natural Connectivity[18]: λ = ln( 1
N

∑N
i=1 e

λi), and λi is

the eigenvalue of adjacent matrix A(G) in G , reflecting the

network vulnerability.
Congestion[19][20]: Congestion = max(bi), defined as

the biggest betweenness of of nodes in the network, reflecting

the biggest congestion in the network;
Synchronization[21][22]: Synchro = max(λi)/min(λi),

defined as the ratio of the biggest eigenvalue and the smallest

negative eigenvalue of the network Laplacian matrix, reflecting

the network’s synchronization ability.
Propagation threshold[23]: Spreading =< k > / < k2 >,

k is the network degree distribution defined as the ratio of

first-order moment and the second-order moment, reflecting

the propagation threshold of the network.
After calculating the above indexes value for the real

network, the observed network and the reconstructed network,

the following formulas are used to measure these networks’

structural gaps:
Relative error of the observed network and the real network

is defined as:

REO = (X(AO)−X(AT ))/X(AT ) (10)

Relative error of the reconstructed network and teh real

network is defined as:
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RER = (X(AR)−X(AT ))/X(AT ) (11)

X(A) stands for one index value from the above nine

indexes.

As a result, comparison of two values REO and RER could

be used to see whether the reconstructed network is closer to

the true network than the observed network.

C. Results Analysis

1) Evaluation Results for LR: We choose Katz, the index

performing best among structural similarity based link pre-

diction indexes, and SBM, the index performing best among

likelihood based link prediction indexes, as comparisons with

the index LR, calculate the values of AUC Missing and

AUC Spurious for each index, to measure their ability in

predicting missing edges and identifying spurious edges.

First we evaluate their ability in predicting network’s miss-

ing links, adjust the ratio of edges randomly removed (missing

edges), and calculate AUC Missing value each time, results

shown as Figure 2 (each point in the figure is the average

value for 100 times computation).

Fig. 2. Comparisons between Reliability and other indexes in predicting
missing edges.

It can be seen from Figure 2 that LR index performs better

than other two indexes as the ratio of missing edges is less

than 0.77; as the ratio is over 0.77, LR performs a little worse

than SBM, and the same as Katz. Overall, LR performs no

worse than other two indexes for 97.03% times.

Similarly, when comparing ability in identifying spurious

edges, adjust the ratio of edges randomly added (spurious

edges), and calculate AUC Spurious value each time, results

shown as Figure 3 (each point in the figure is the average value

for 100 times computation).

It can be seen from Figure 3 that LR index always performs

better than other two indexes,

Fig. 3. Comparisons between Reliability and other indexes in detecting false
edges.

Combined with Figure 2 and Figure 3, LR index is a better

link prediction index in purifying the network noise, i.e.,

identify spurious edges and predict missing edges.

2) Evaluation Results for TON Reconstruction: Here we

validate the effectiveness of the reconstruction algorithm.

First, adding some noise on the true network, and obtain the

observed network AO, assume the ratio of missing edges is

α, the ratio of spurious edges is β, let α = β = p, and call p
as the observed error. After the reconstruction algorithm, the

reconstructed network AR is got, measure the closeness of AO,

AR and AT by calculating REO and RER. If RER < REO,

means the AR is closer than AO to AT , the reconstruction

algorithm is validated then.

Make p changes from 0 to 1, and the step is set 0.05,

calculate the nine topological indexes above, results are shown

as Figure 4(each point in the figure is the average value for

100 times computation).
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Fig. 4. Comparisons of REO and RER in nine topological indexes
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In Figure 4, black ’.’ stands for REO value, and green

’*’ stands for RER value, it can be seen that except the

congestion index and Clustering Coefficient index, RER is

less than REO all the time. For congestion index, as p less than

0.5, RER is less than REO; for clustering coefficient index,

AR seems farther to AT than AO;for synchronization index,

since there existing some abnormal points, which stretches the

vertical coordinate axis in a large scale, and make it difficult

to judge. All in all, comparisons on nine topological indexes

show the reconstructed network is closer to the true one than

the observed network.

VI. CONCLUSION

In this paper, we put forward a target operation network

structure reconstruction algorithm and validate it in the public

data, experimental results indicate the algorithm is able to

effectively narrow the structure gap between the observed

network and the real one to some certain extent.Firstly, a

link reliability index, called LR, was proposed based on the

hypothesis that the existing possibility between two nodes is

mainly determined by their types and topological locations,

and verified that LR could better identify spurious edges

and predict missing edges, compared with SBM and Katz

index; then network reliability index, based on LR, was put

forward, we designed a locally greedy search algorithm based

on the assumption that the spurious edge number equals to the

missing edge number to reconstruct the TON structure. The

experimental data consists 89 units and 155 links, let it be

the true network, and assumed an observed network through

adding some noise (randomly remove some missing edges

and add some spurious edges). Nine indexes were utilized

to measure the algorithm performance, experiments on the

observed network showed that the reconstruction algorithm

could effectively narrow its gap with the true one for each

index, since there are both static structural index and dynamic

structural index in these nine indexes, they comprehensively

represent all the structural characteristics for a network, as a

result, the reconstructed network is closer to the real one in

topology.
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APPENDIX

PROOF OF THEOREM 1

The stochastic model is introduced first before the proof.

Stochastic block is one of the most pervasive networks

[1][2][3][5]. This model divides the nodes in the network

into several groups, and whether the two nodes are linked

is determined by the group they belong to. In other words,

the roles of all nodes in the same group are identical. The

stochastic block model is particularly suitable for situations

when nodes’ roles exert significant influences on their linking

behaviors. A stochastic block model is composed by two parts:

one is the plans that the network is divided into a number of

groups; the other is the linking probability matrix between two

nodes that come from two different groups. Let Ω represents

all the grouping plans, given a specific plan P ∈ Ω and a

specific linking probability matrix Q, a stochastic block model

M = (P,Q) is then determined. The current structure from

an observable network can be regarded as from an unknown

stochastic block model. Suppose the current network structure

is Ao , psi represents a specific property, then the probability

that this network with the property is:

p(ψ|Ao) =

∫
Θ

p(ψ|M)p(M |Ao)dM (12)

where Θ stands for the set of total stochastic block models,

M ∈ Θ refers to a specific stochastic block model, and

p(ψ|M) represents the probability that the observed network

generated by model M has property psi, and p(M |Ao)dM
stands for the probability that the observed network is actually

generated by model M . According to Bayes Theory,we have:

P (M |Ao)p(Ao) = p(Ao|M)p(M)

since:

p(ψ|Ao) =

∫
Θ
p(ψ|M)p(Ao|M)p(M)dM∫
Θ
p(Ao|M ′)p(M ′)dM ′ (13)

Next, formula(13) is utilized to prove the theorem.

Proof. Let the property ψ be Axy = 1, probability p(Axy =
1|Ao) represents the link reliability of {vx, vy} , according to

formula(13):

p(Axy = 1|Ao)

= 1
Z

∑
P∈Ω

∫ 1

0
|Q|p(Axy = 1|P,Q)p(Ao|A,Q)p(P,Q)dQ

where |Q| stands for the numbers of matrix elements, which

are equal to the square of the number of groups in the network,

and

Z =
∑
P∈Ω

|Q|p(Ao|P,Q)p(P,Q)dQ (14)

since p(Axy = 1|P,Q) = Qσx,σy , then

p(Ao|P,Q) =
∏
α≤β

Q
loαβ

αβ (1−Qαβ)
rαβ−loαβ (15)

Take formula (15) into formula (14),and get

Z =
∑
P∈Ω

∏
α≤β

∫ 1

0

Q
loαβ

αβ (1−Qαβ)
rαβ−loαβdQαβ (16)

Let

H =
∏
α≤β

∫ 1

0

Q
loαβ

αβ (1−Qαβ)
rαβ−loαβdQαβ (17)

Next we prove:

H = exp{−
∑
α≤β

[ln(rαβ + 1) + ln(
rαβ

loαβ
)]} (18)

Proof. With Beta integral formula:

∫ 1

0
ta−1(1− t)b−1dt = (a−1)!(b−1)!

(a+b−1)!

we have:

∫ 1

0
Q

loαβ

αβ (1−Qαβ)
rαβ−loαβdQαβ =

loαβ !(rαβ−loαβ)!

(rαβ+1)!

= 1
rαβ+1

loαβ !(rαβ−loαβ)!

rαβ !

and

lnH =
∑

α≤β ln(
1

rαβ+1

loαβ !(rαβ−loαβ)!

rαβ !
)

= −∑
α≤β [ln(rαβ + 1) + ln(

rαβ

loαβ
)]

Thus

H = exp{−∑
α≤β [ln(rαβ + 1) + ln(

rαβ

loαβ
)]

According to formula (18),

Z =
∑
P∈Ω

H =
∑
P∈Ω

exp{−
∑
α≤β

[ln(rαβ + 1) + ln(
rαβ

loαβ
)] (19)

and

p(Axy = 1|Ao)

= 1
Z

∑
P∈Ω

∏
α≤β

∫ 1

0
p(Axy = 1|P,Q)Q

loαβ

αβ (1 −
Qαβ)

rαβ−loαβdQαβ

= 1
Z

∑
P∈Ω

∏
α≤β

∫ 1

0
Qσx,σy

Q
loαβ

αβ (1−Qαβ)
rαβ−loαβdQαβ

1o. when (σx, σy) �= (α, β) ,

∏
α≤β

∫ 1

0
Q

loαβ

αβ (1−Qαβ)
rαβ−loαβdQαβ
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= exp{−∑
α≤β,(σx,σy) �=(α,β) ln(rαβ + 1) + ln(

rαβ

loαβ
)}

2o. when (σx, σy) = (α, β) ,

∫ 1

0
Qσx,σy

Q
loαβ

αβ (1 − Qαβ)
rαβ−loαβdQαβ =

∫ 1

0
Q

loσxσy
+1

σxσy (1 −
Qσxσy

)
rσxσy−loσxσy dQσxσy

=
(loσxσy

+1)!(rσxσy−l)!

(rσxσy+2)!

=
loσxσy

+1

rσxσy+2exp{[ln(rαβ + 1) + ln(
rαβ

loαβ
)]}

Combine the above two situations, and reliability for link

{vx, vy} could be calculated as formula(20):

p(Axy = 1|Ao) = Gxy =
1

Z

∑
P∈Ω

loσxσy
+ 1

rσxσy + 2
H (20)

And the expression of Z,H see as formula (19) and formula

(??).

For a specific TON, node type have been fixed, which means

the division plans P are also fixed, then :

p(Axy = 1|Ao) = gxy =
loσxσy

+ 1

rσxσy + 2
(21)

Theorem 1 has been proved.
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