
VirtualStack: Adaptive Multipath Support
through Protocol Stack Virtualization

Jens Heuschkel1, Alexander Frömmgen2, Jon Crowcroft3, Max Mühlhäuser1

1TK / TU Darmstadt, 2DVS / TU Darmstadt, 3SRG / University of Cambridge

{heuschkel, max}@tk.tu-darmstadt.de, froemmge@dvs.tu-darmstadt.de, jon.crowcroft@cl.cam.ac.uk

Abstract—More and more network devices, such as servers
or smartphones, have multiple network interfaces. Today’s com-
monly used communication protocols do not leverage these
interfaces to increase bandwidth and reliability using multiple
network paths. Recent approaches, such as Multipath TCP
(MPTCP), clearly show these advantages. However, adaptation
of MPTCP is slow as it requires a modified kernel and faces
compatibility issues inside the network. MPTCP is also inflexible
in the sense that all paths must use TCP. The challenge is to
support multipathing on any operating system, with any legacy
application using any transport layer protocol.

In this paper, we present VirtualStack. VirtualStack manages
multiple network stacks per application and decides on the best
stack on a per-packet basis. This allows to support multipath
using any combination of interfaces and protocols for every
application. We evaluate the multipath support by comparing
VirtualStack against MPTCP using a combination of TCP and
UDP connections. Additionally, we show how rules provide
flexible programmings abstractions for VirtualStack.

I. INTRODUCTION

Multihoming is a well known technique to increase reli-

ability and bandwidth, by connecting a device to multiple

networks. Most devices today are physically multihomed,

i.e., they are equipped with multiple network interfaces. Mo-

bile devices, for example, provide cellular and WiFi interfaces.

Multipath TCP (MPTCP) increases bandwidth and robust-

ness by using these multiple network interfaces and hence

multiple paths in parallel [4], [16]. For this purpose, MPTCP

uses multiple TCP subflows covering different paths. The ad-

vantages of MPTCP are obvious and have been shown several

times [15], [14]. Apple’s natural language user interface Siri,
for example, is known to use MPTCP.

Unfortunately, outside of data-centers and some lighthouse

applications, MPTCP penetration is lagging due to slow adop-

tion by operating system vendors and network operators. As

of today, Windows does not support MPTCP, and the MPTCP

Linux implementation is neither part of the default Linux

kernel nor of the standard Android. Additionally, Internet

Service Providers (ISPs) must support the MPTCP header,

i.e., must not modify MPTCP headers sent as TCP option [8].

However, many middleboxes in the internet modify or filter

options [2], severely limiting the adoption of MPTCP.

MPTCP only supports TCP subflows. We argue that mul-

tihoming should be agnostic of the used underlying network

protocol. In many situations, a multihoming UDP connection

might be more beneficial, or even combinations of protocols

on different paths. This increases the flexibility and allows

to avoid common pitfalls which impact performance on some

link types (e.g., a VPN link1). Thus, the challenge is to support

multipath on any operating system, with any legacy application

using different transport layer protocols.

In this paper, we present how VirtualStack (VS) [7], a

framework for protocol stack virtualization, provides flexible

multipath connections with multiple different network proto-

cols. VS manages several independent network stacks – from

the physical to the transport layer – per application flow. It

decides on the best stack on a per-packet basis. This allows to

leverage multiple paths, and even to apply different transport

protocols per path. Our evaluations show that the increased

flexibility of VS does not harm the throughput compared

with MPTCP. For scenarios with different transport protocol

stacks per sub-flow, VS provides even more performance as

it can leverage properties of the underlying network links.

We show that this benefit comes with a reasonable low CPU

overhead. Furthermore, we show how rules provide a flexible

programming abstractions for the VirtualStack.

The contribution of VirtualStack in this paper is twofold:

• VirtualStack enables transparent multipath connections

for any application using standard protocols.

• VirtualStack enables flexible multipath connections in the

sense that each path can be treated differently.

The remainder of this paper is organized as follows. First,

we present the architecture of VS in Section II. Next, Sec-

tion III presents our performance measurements of the differ-

ent protocols. Section IV discusses the related work. Finally,

Section V concludes the paper and discusses future work.

II. ARCHITECTURE

In this Section, we present the modular architecture of Vir-

tualStack (VS) and discuss the responsibilities and capabilities

of its modules.

A. General Considerations

In principle, the desired functionality could be implemented

in several ways, e.g., as (a) programming framework, (b) shim

layer, (c) or kernel module. In the following, we discuss these

approaches and argue for a fourth, superior solution.

(a) A programming framework which provides a modified

network socket could easily manage the network connection

for the application. This implies, however, that applications

1http://sites.inka.de/bigred/devel/tcp-tcp.html

Proceedings of the Eleventh International Network Conference (INC 2016)

73



(a) (b)

Fig. 1: Illustration of the difference between (a) traditional network operations and (b) the operation with VirtualStack

are prepared to use this framework. Existing legacy applica-

tions would not benefit from such a framework. Additionally,

developers have to explicitly consider the framework and learn

how to use it. Thus, most applications would be written in the

same way it is done today without the new functionality.

(b) A shim layer, such as wine [1], is a small library

which transparently intercepts API calls. As this implies that

the operating systems libraries have to be modified, it is not

a optimal solution because operating systems with a closed

kernel source wouldn’t benefit from the new functionality.

(c) A kernel module suffers from similar problems. Mod-

ifying the kernel requires access to the kernel source code.

This would work for most Unix/Linux flavors and some BSD

systems but not for MAC OSX, iOS or Windows.

In this paper, we tackle these problems and propose a fourth

option: Intercepting the network connection with a virtual

network interface (VNIC). Using a VNIC – or especially a

TUN device – allows us to deploy VS on every operating

system that supports VNICs, such as Linux, Windows, Mac

OSX, iOS, and Android. Even though we are convinced the

proposed VNIC approach is the most suitable, the concepts of

VS could inspire the implementation alternatives (a-c).

Figure 1 compares a traditional networking application

scenario with VS. Whereas the traditional approach uses a

static network stack, VS intercepts the network connection at

both hosts. The payload is tunneled through a virtual network

interface. VS provides multiple network stacks and adapts

the protocol stack for the current network environment. We

divide the architecture – illustrated in Figure 2 – in three

main modules with different responsibilities: Analysis module

(Section II-B), decision module (Section II-D), and execution
module (Section II-E). To enable an easy implementation and

separate the VS-Core implementation we decide to implement

a lightweight interface (Section II-C) to control VS. The

decision module is a user-space program which connects to

this lightweight interface.

To understand the details of every module, we explain the

data-flow – illustrated by the arrows in Figure 2 – inside

of VS first. As described above, we use a VNIC (i.e., a

TUN device) to get payload (as IP packets) from applications.

The received IP packet is processed by the analysis module

first. After this step the analysis module passes the packet

to the execution module and some meta information to the

decision module. The execution module sends the payload over

a prepared network connection to its target. Additionally the

decision module has the option to send control commands to

the execution module.

Fig. 2: VirtualStack architecture

B. Analysis Module

The analysis module parses every packet header to identify

the corresponding flow. A flow is identified by its flow id
generated out of three parameters: source port, destination

port and destination address. In case the parameters aren’t

available, the packet is assigned to the flow 0. Every packet

from flow 0 is sent over the raw stack (see Section II-E).

Additionally, the analysis module parses the used protocols

up to the transport layer (e.g., TCP + IPv4). These meta

information are used by the decision module to configure the

right endpoint (see Section II-E) and to build an initial stack.

Proceedings of the Eleventh International Network Conference (INC 2016)

74



C. Control Protocol

We introduce the control protocol vs-control to configure the

VS. This protocol decouples the VS from plugable decision

modules. The protocol specifies the communication between

the decision module and VS in both directions. All registered

decision modules are informed about events such as new

incoming flows. These events contain additional information,

e.g., the flow id and the used protocols. The decision module

controls VS with the following four basic commands:

• Build Stack [features] for [FlowId]: Builds a new net-

work stack with specified features and properties, e.g. a

TCP stack with reno congestion control on the LTE link.

• Set [StackId] for [FlowId] with [quota]: Sets the specified

network stack for the specified flow as active. In case

more than one stack is activated, the stacks are used in a

weighted round robin manner using the quota.

• Unset [StackId] for [FlowId]: Sets the specified network

stack for the specified flow as inactive. If every stack is

inactive, the default stack – which is the first built stack

– is used.

• Cleanup [FlowId]: Deletes all stacks to the corresponding

flow. After this call, any following packet from this flow

is registered as new flow.

These simple but powerful commands allow for plugable

decision module which define complex behavior.

D. Decision Module

The decision module is responsible to manage and optimize

the flows. Therefore, it requires information about the flows

from the analysis module. For every flow it builds a stack

engine with an appropriate endpoint and an initial stack.

Since the decision module has a management interface, it can

communicate with an external optimization instance, e.g., a

SDN controller. The optimization instance can send commands

or install rules for the best configuration of a connected

network path. With these rules the decision engine is capable

to build more suitable stacks for a given network environment.

� �
agg([flowId].rx.throughput, 5s) < 10Mbps:
set [TCPoverLTEStack] for [flowId];

� �

Listing 1: Example rule which activates an additional LTE

flow in case of low WiFi throughput.

We envision decision modules which provide expressive

abstractions for complex adaptive behavior. Event Condition
Action rules for adaptive distributed systems [5], for example,

could support the specification of complex adaptation logic.

These rules provide concepts to express events and conditions

which trigger changes of the protocol stacks. Supposing, for

example, an application requires a certain throughput, the rule

as shown in Listing 1 turns on LTE in case the WiFi connection

is not sufficient. The rules can be evaluation efficiently at the

local network device in software and use additional monitoring

data and events.

E. Execution Module

The main part of VS is the execution module, illustrated

in Figure 3. The module consists of a flow manager, multiple

stack engines and a raw stack.

The flow manager assigns every incoming packet to the

respective stack engine based on the flow id. If a new flow is

registered, the flow manager sets up a new stack engine with

the protocols used by the clients. The stack engine is the main

component to fulfill the protocol virtualization. It contains the

endpoint for the application, a NAT engine, a stack manager,

and the corresponding stacks of this flow.

After passing the analysis module, every application flow

managed by VS is terminated at the associated endpoint. The

endpoint acts like a transparent protocol proxy, i.e., it handles

the connection to the application and passes the payload to the

stack manager. In the case of UDP, for example, the endpoint

just sets a pointer to the payload of the packet. TCP is more

complex since the endpoint has to handle connection tasks

such as handshakes, acknowledgments and retransmissions.

For every new stack, the target server address is given by

the NAT engine. Typically this is the target address which is

parsed by the analysis module. For the transparent redirection

of flows, e.g., after a link failure or for load balancing, the

target address can be changed.

The stack manager is responsible for the actual stacks, that

means it builds and uses stacks to send the payload. When a

command to build a new stack is received, the stack manager

takes the destination address from the NAT engine. The stack

manager treats any stack as abstract container, which leads

to some degree of freedom. One option is to take a classical

protocol combination and utilize the kernel implementations

for that. VS provides the additional flexibility to implement

new protocols as user-space stack.

Fig. 3: VirtualStack Execution Module

Proceedings of the Eleventh International Network Conference (INC 2016)

75



(a) TCP comparison: Throughput for TCP stacks
on two 1 Gbps links.

(b) TCP vs UDP: VS throughput in comparison
to traditional protocols on two 1 Gbps links.

(c) Overhead: CPU utilization of VS for two
parallel links depending on the link speed.

Fig. 4: Performance evaluation results for VS in comparison to different protocols

As described in Section II-D, multiple stacks can be activate

within one stack engine. This is useful for multihoming since

the decision engine can activate stacks which are bind to

different physical interfaces.

The raw stack is a special stack engine for unsupported

protocols. Incoming packets that cannot be parsed by the

analysis module are mapped to flow 0, that is assigned to the

raw stack. As packets are sent over the raw stack without any

changes, VS supports arbitrary applications.

III. EVALUATION

We implemented the VirtualStack (VS) architecture outlined

in the previous section and evaluated it with two different

setups. First a bare metal setup for performance measurements

on physical hardware without any vitualized network parts

and second a Mininet [6] setup where we have a controllable

environment for demonstrating the operation with ECA rules.

Finally, we discuss limitations.

A. General Considerations

VS is implemented as a user-space software in C++. From a

performance perspective, it adds another layer of processing to

the network interface. Therefore, it is important to mitigate the

processing impact as much as possible. VS’s implementation is

efficiency optimized regarding the CPU, e.g., reduces waiting

times for memory operations. Hence, network packets are not

copied inside VS. The network packets are read from the

TUN device into a kernel buffer. VS then relies on pointers

to the respective part of the buffer for any further processing.

Therefore, there are only two copy operations of the data in

total. First, the copy generated in the kernel-space as the packet

is generated. Second, the copy from the kernel-space to the

sending buffer of the network device.

For our performance measurement evaluation, we used two

machines – a server and a client – each with two 1 Gbps

Ethernet network interfaces. They are connected through two

physically separated path with CAT6 Ethernet cables. The

CPU used for the CPU usage measurements was a mid range

commodity CPU (Intel Core i5-4690k) with 3.5 GHz.

For the Mininet evaluation we used one machine with two

virtual hosts connected through two separated path, one main

channel with 50 Mbit/s (WiFi speed for IEEE 802.11g) and

one offloading channel with 20 Mbit/s (typical LTE speed [9]).

The operating system used was Ubuntu 14.04 LTS x64 with

a 3.13.0-45-generic kernel for both setups.

To generate the workload, we used a Python-based packet

generator and counted the transferred packets. The packet

generator creates payloads for packets and sends them through

a TCP or a UDP socket. The packet counter counts the number

of received packets and calculates the throughput. We verified

our results with IPerf [17] measurements for TCP, UDP, and

MPTCP. Since the server side implementation of VS – to back-

transform the used protocols – is still ongoing we couldn’t use

IPerf for the measurements with VS.

B. Performance Measurements

We start with building a baseline through measuring the

performance of the traditional protocols UDP, TCP, and

MPTCP. Since VS is a framework which enables automatic

network management and optimization we focus on the stan-

dard configurations of the single protocols. This reflects the

performance when the application does not tweak the network

protocol to optimize the connection (which is in fact the most

common situation). The maximum aggregated performance of

a multipath connection is limited by the combined perfor-

mance of the single connections. Our measurements show that

VS performance is even closer to this maximum as MPTCP.

Further, we show that it is beneficial for performance to use

lighter protocols like UDP on reliable links.

To demonstrate its capabilities, we used three different

modes: (i) VS TCP, which uses TCP on both channels, (ii)

VS UDP, which uses UDP on both channels, and (iii) VS

MIXED, which uses an UDP and a TCP channel. We discuss

our results in three groups: (a) a TCP comparison, (b) TCP vs

UDP and mode comparison, and (c) the induced overhead.

(a) To show that VS is competitive to established methods,

we measured TCP and MPTCP as baseline and compared it to

VS. Figure 4a illustrates our measurement results regarding the

considered TCP flavors. As expected, a single TCP connection

has the lowest throughput with 725 Mbps. With a variability

(throughputmax − throughputmin) of 1 Mbps, it is the

most stable link in our measurements. MPTCP enables an

average throughput of 1327 Mbps, which is quite near the

assumed optimum of 1450 (two times the TCP connection).

The variability over was 119 Mbps. VS in (i) TCP mode

creates two traditional TCP connections and distributes the

packet load over these two. It enables a throughput of 1433

Proceedings of the Eleventh International Network Conference (INC 2016)

76



Fig. 5: Throughput for an offloading scenario: main channel

(Ch1), offloading channel (CH2), combined (AVG).

Mbps, which is very close to the theoretical optimum and

slightly better than MPTCP but has also a slightly higher

variability of 127 Mbps. In fact, the measurements show that

VS is competitive to MPTCP in terms of throughput, but

brings a number of additional features and more flexibility

with it. However, VS is able to use MPTCP as transport

protocol but opens the possibility to use different protocols

on other channels.

(b) As a second common protocol, which is fairly

lightweight and therefore promises a higher throughput, we

measured UDP (Figure 4b). With regard to theoretical op-

timum bandwidth, UDP has better performance than TCP

since it is a much lighter protocol without the overhead of

acknowledgments, retransmissions or congestion control. This

restricts the use cases to reliable links or applications which

are able to cope with the weaknesses of UDP (e.g., video

streaming [13]). Thus, the measured throughput of 973 Mbps

is near to the theoretical optimum bandwidth of the link.

With VS in (ii) UDP mode, we reach a throughput of 1934

Mbps, which this is nearly the sum of two UDP channels. The

variability of 84 Mbps is slightly lower than in TCP mode,

which is owed to the missing congestion control.

We further measured this scenario in MIXED mode with

different protocols on each of the two channels. This feature

is useful, if the connectivity of the device is heterogeneous,

e.g., a laptop with an reliable VPN link build on TCP

and a unreliable WiFi link. VS in MIXED mode enables a

throughput of 1667 Mpbps with a variability of 132 Mbps

(Figure 4b). Theoretically, the combination of a TCP and a

UDP channel enables 1688 Mbps, which is again just a little

more than VS delivers. The shown protocols are the most

common protocols on the Internet but it would be possible

to use the whole range of available protocols. E.g., in data-

centers, where reliable links are available, instead of UDP,

DCCP could be used if a congestion control is required.

(c) The higher flexibility comes with a cost. As we described

above, we do not copy packets inside VS to reduce any

unnecessary waiting time for memory operations and to enable

efficient CPU utilization. In Figure 4c, the CPU usage is

illustrated. For the used 1 Gbps link, VS needs between 22%

and 37% on a single core of our test machine. As we limit

the network speed of both interfaces to 100 Mbps, VS uses

around 4% of one CPU core. This indicates that VS scales

very well, since a 10 times faster link leads just to around 5-9

times higher CPU usage. In fact, this is not much overhead

over the TCP encumbered CPU usage. A generally accepted

rule of thumb [3] is that 1 Hertz of CPU processing is required

to send or receive 1 bit/s of TCP/IP, which would lead to 29%

of CPU usage with a 1 Gbpslink. We also observe that the

CPU usage does not increase with more flows. That’s because

the load comes from the number of processed packets, which

is limited by the available bandwidth.

We want to create a solution which works, in principle,

with every operating system. For this reason, we refrained

to use TCP Offload Engine (TOE), which potentially enables

significant lower CPU usage [10]. We didn’t re-implement

all known improvements and techniques from MPTCP. As

congestion control we rely on the techniques from TCP on

every single path. With UDP we have no congestion control

at all. Also the packets need to be reordered on the server side

and the round robin scheduling is not convincing on unequal

links. In Section V we present some ideas how to solve this.

Our measurements show that multiple paths on devices

with multiple network interfaces enable higher throughput.

We further demonstrated that the increased flexibility of VS

does not harm the performance. VS delivers a wider range of

applications since VS is able to freely use available protocols

for every network layer up to transport layer.

C. Rule-based Programming

To demonstrate the ease of the rule-based programming

abstraction, we executed VS with two simple rules for an

offloading scenario (Listing 1). Imagine a live video transfer,

which requires at least an average throughput of 30Mbit. With

two simple rules, VS can activate a second channel, e.g., a

LTE connection, in case the throughput of the primary channel

drops suddenly due to congestion. Figure 5 shows an example

run in Mininet, where cross traffic leads decreasing throughput

on the first channel and therefore triggers the activation of the

second channel. A second rule deactivates this channel later,

as it detects that the primary channel is sufficient again.

IV. RELATED WORK

In [7], Heuschkel et al. presents rough sketch of VirtualStack

(VS) and discusses the use-cases (i) protocol transformation,

(ii) multipath routing, and (iii) flow migration. The authors

evaluated the use-case (i) protocol transformation between

UDP and DCCP with a very low switching delay and almost

no throughput degradation. The prototype provided a maximal

throughput of 4.36 Gbps.

Multipath TCP (MPTCP) is the most related protocol for the

discussed features of VS. In [14] and [15], it is shown that

MPTCP is capable to improve the performance and robustness

of network connections. MPTCP has some limitations as

noted previously: the end-to-end path must permit the MPTCP

flag, and it is not yet implemented for all operating systems.

Proceedings of the Eleventh International Network Conference (INC 2016)

77



Additionally, MPTCP does not provide the flexibility to use

different protocols for its subflows.

In [12], Martins et al. presents ClickOS, which is a

lightweight operating system uses click modular router [11]

to enable network flow manipulation. It is also possible to

split network flows to multiple path, which could lead to a

better performance. It suits perfect the needs for applications

regarding network function virtualization. However, it is not

intended to run on edge devices, such as mobile devices.

In the IETF Draf [18], You presents 3RED TAPS. Like

VS it provides a decoupling of applications and the network

transport layer. Another common goal is to achieve that

decoupling without a customization or reimplementation of

the applications. For that, TAPS need a kernel modification to

insert their services before the network packets are processed

in the kernel. However, VS is intended to decouple the

applications from all network matters and not just from the

transport layer. Also, VS is build to run on every operating

system without modifying the kernel.

In contrast to the related work, this paper presented the first

approach to use protocol stack virtualization for combining the

benefits of multiple paths and the flexibility of a virtual pro-

tocol stack which decouples the application and the network.

V. CONCLUSION AND OUTLOOK

In this paper, we presented VirtualStack (VS), a protocol

virtualization framework which decouples the application and

the network stack. We discussed how this increases the flex-

ibility, and showed on a concrete example how it enables

optimizations. We further showed how protocol virtualization

enables multipath communication increasing reliability and

throughput. We demonstrated the flexibility of the protocol

virtualization concept combine different protocols on different

network paths transparently for the application. The decoupled

architecture of VS enables existing applications to benefit from

multiple paths in the network and the flexibility of different

protocols without changes.

We implemented VS as user-space program. Our measure-

ments show that VS delivers at least the same throughput

as MPTCP. We further presented measurements to show the

performance of a multipath UDP network stack and mixed

stack with UDP and TCP on the different paths. Thereby, the

overhead of VS in terms of RAM is less than 2 MB in all

tested scenarios. The CPU usage depends on the achieved

throughput and the underlying links. For a 1 Gbps link VS

uses just between 22% and 37% (depending on protocol) of

CPU power on a single core. On a 100 Mbps link VS uses

just about 4% of CPU power on a single core. Note that it is

just the utilization of one core and competes with the common

rule of thumb for TCP connections.

In this paper, we discussed how the decision engine can

implement adaptive behavior to control the usage of multiple

paths in the network. In the future, we will connect existing

SDN controllers in the network with the control infrastructure

of VS to fully decouple the data plane from the control plane

not only inside the network, but also on the end-devices.

ACKNOWLEDGMENT

This work has been funded by the German Research Foundation
(DFG) as part of the projects A02 and B02 within the Collaborative
Research Center (CRC) 1053 – MAKI.

REFERENCES

[1] Winehq - run windows applications on linux, bsd, solaris and mac os x.
https://www.winehq.org/, 2015.

[2] G. Detal, B. Hesmans, O. Bonaventure, Y. Vanaubel, and B. Donnet.
Revealing middlebox interference with tracebox. In Proceedings of the
2013 conference on Internet measurement conference, pages 1–8. ACM,
2013.

[3] A. P. Foong, T. R. Huff, H. H. Hum, J. P. Patwardhan, and G. J. Regnier.
Tcp performance re-visited. In Performance Analysis of Systems and
Software, 2003. ISPASS. 2003 IEEE International Symposium on, pages
70–79. IEEE, 2003.

[4] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. TCP Extensions
for Multipath Operation with Multiple Addresses. RFC 6824.

[5] A. Frömmgen, R. Rehner, M. Lehn, and A. Buchmann. Fossa: Learning
eca rules for adaptive distributed systems. In International Conference
on Autonomic Computing, 2015. in press.

[6] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown.
Reproducible network experiments using container-based emulation. In
Proceedings of the 8th International Conference on Emerging Network-
ing Experiments and Technologies, CoNEXT ’12, pages 253–264, New
York, NY, USA, 2012. ACM.

[7] J. Heuschkel, I. Schweizer, and M. Mühlhäuser. Virtualstack: A
framework for protocol stack virtualization at the edge. In Proceedings
of IEEE Local Computer Networks Conference, 2015.

[8] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley, and
H. Tokuda. Is it still possible to extend tcp? In Proceedings of the 2011
ACM SIGCOMM Conference on Internet Measurement Conference,
pages 181–194, 2011.

[9] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck.
A close examination of performance and power characteristics of 4g
lte networks. In Proceedings of the 10th International Conference on
Mobile Systems, Applications, and Services, MobiSys ’12, pages 225–
238, New York, NY, USA, 2012. ACM.

[10] K. Kant. Tcp offload performance for front-end servers. In Global
Telecommunications Conference, 2003. GLOBECOM ’03. IEEE, vol-
ume 6, pages 3242–3247 vol.6, Dec 2003.

[11] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The
click modular router. ACM Transactions on Computer Systems (TOCS),
18(3):263–297, 2000.

[12] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and
F. Huici. Clickos and the art of network function virtualization. In 11th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 14), pages 459–473. USENIX Association, 2014.

[13] J. Nightingale, Q. Wang, C. Grecos, and S. Goma. The impact of
network impairment on quality of experience (qoe) in h.265/hevc video
streaming. Consumer Electronics, IEEE Transactions on, 60(2):242–
250, May 2014.

[14] C. Paasch, G. Detal, F. Duchene, C. Raiciu, and O. Bonaventure.
Exploring mobile/wifi handover with multipath tcp. In Proceedings of
the 2012 ACM SIGCOMM Workshop on Cellular Networks: Operations,
Challenges, and Future Design, CellNet ’12, pages 31–36, New York,
NY, USA, 2012. ACM.

[15] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley. Improving Datacenter Performance and Robustness with
Multipath TCP. SIGCOMM Comput. Commun. Rev., 41(4):266–277,
Aug. 2011.

[16] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene,
O. Bonaventure, M. Handley, et al. How Hard Can It Be? Designing
and Implementing a Deployable Multipath TCP. In NSDI Vol. 12, pages
29–29, 2012.

[17] A. Tirumala, L. Cottrell, and T. Dunigan. Measuring end-to-end
bandwidth with iperf using web100. In Web100, Proc. of Passive and
Active Measurement Workshop, page 2003, 2003.

[18] J. You. 3red model for taps. Internet-Draft draft-you-taps-3red-
model-00, IETF Secretariat, June 2015. http://www.ietf.org/internet-
drafts/draft-you-taps-3red-model-00.txt.

Proceedings of the Eleventh International Network Conference (INC 2016)

78


