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Abstract— Multi-domain networks are vital to datacenters,
home and enterprise networks. The networks require an
independent and private control plane. Thus, the networks must
be resilient and easily scalable. The emergence of Software
Defined Networking (SDN) protocols simplifies the evolution of
networks by decoupling the control plane from the data plane. In
this paper, a Distributed approach in the Multi-domain
Controllers architecture (DMC) is introduced. It interconnects
heterogeneous networks to form a wide area network (WAN)
while preserving the privacy of their domains. It also deals with
the link failure across the domains, making it resilient. The
controller manages its own network domain and exchanges
minimal information among neighbor controllers. It applies a
light weight control carrier (i.e., RabbitMQ) that reduces
overheads. The application has been implemented on top of the
RYU control platform.
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I. INTRODUCTION

Within the past few years, Software Defined Networking
(SDN) [1] has gained immense interest from the industry and
academia [2]. It solves many challenging concerns of legacy
networks by transferring the intelligence from traditional
network devices to a centralized control plane. It has been
declared as the future paradigm of networking; aimed at
decoupling the control plane from the data plane and network
programming. The centralized control plane, often known as
the controller, manages the universal view of the network via a
southbound interface. OpenFlow [3], specified by the Open
Networking Foundation (ONF), is currently the leading
protocol specifying the southbound interface.

SDN centralizes the network control plane that provides
abilities to program, monitor, and manage networks efficiently.
However, a dramatic increase of the network scale may force a
single controller to drop an increasing number of incoming
packets; it could become the bottleneck of the entire network.
This unified approach may not be suitable for interconnecting
multi-domain networks while dealing with potential scalability
concerns [4].

Recent proposals have been offered to physically distribute
the SDN control plane. A distributed control plane is divided
into two categories: (1) distributed but logically centralized,
and (2) hierarchically distributed.
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Hyperflow [5], Onix [6] and Devolved Controllers [7]
maintain a network-wide centralized view while distributing
the network control plane. In the hierarchical distribution,
Kandoo [8] reduces the load of the control plane by processing
frequent events in the local controllers and rare events in a
global controller. These approaches manage the scalability of
the control plane within a single domain. Multi-domain
networks are the core of datacenters, home, and enterprise
networks. Therefore, a SDN-driven solution is required, where
a domain can scale and interconnect amongst other domains
resiliently and preserve their privacy.

This paper proposes a novel Distributed approach in Multi-
domain Controllers (DMC). It is not only able to handle the
scalability of a single domain but can also interconnect
multiple domains regardless of the geographical locations of
the datacenters, telecommunication, home, and enterprise
networks. This paper emphasizes on interconnecting multiple
domains but it can be applied to a single domain, intuitively.

In DMC, a centralized controller is in charge of its own
domain, and fulfills the necessities of itself and sharing
minimal information (i.e., host addresses) in order to entertain
end-to-end services among neighbor domains to ensure
privacy. Controller to controller communication is made
possible by a light-weight control channel that utilizes the
messaging mechanism, RabbitMQ [9], which is one of the
implementations of AMQP [10]. Additional overheads are
reduced because only minimal required information is passed
through the light-weight control channel in order to compute
routes across domains, as well as to ensure user-to-user
connectivity. It manages link failure across the domains and
maintains communications smoothly with minimum link
recovery time. The DMC is implemented on top of the RYU
[11] control platform. The control plane has been declared as
the best controller in a recent survey [12]. To the best of our
knowledge, this is the first distributed application implemented
on the RYU [11] control platform.

The remainder of the paper is organized as follows. In
Section II, related work is discussed. Section III introduces the
DMC architecture and implementations. Results are presented
in Section IV, and Section V concludes the paper.

II. RELATED WORK

The concept of introducing Multi-controllers in the control
plane to solve scalability issues is well known, with many
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solutions proposed in this area. Hyperflow [5] introduces a
cloud of controllers sharing the same consistent network-wide
view by synchronization using a distributed file system. Onix
[6] takes it one step further and introduces the platform on
which a distributed control plane could be implemented. It also
uses a distributed file system. ElastiCon [13] and Devolved
controllers [7] address the control plane scalability issue in
datacenters by dynamically configuring switches to controllers.
ASIC [14] introduced the traditional load balancer in their
architecture, which balances the load by diverting incoming
packets to different controllers.

Kandoo [8] takes the scalability concern to another level by
introducing a hierarchical architecture. It proposes two layers
of controllers: (1) the root controller maintains network-wide
view and processes rare events, whereas (2) the local
controllers do not have any knowledge of the network-wide
state and are subjected to frequent events. However, all the
above mentioned approaches only deal with the scalability
concerns in a single domain.

Zerrik et. al. [15] introduced a decentralized hierarchical
architecture comprising of direct and parent controllers. The
direct controllers serve local requests, and the parent
controllers are responsible for inter-domain requests. This
approach interconnects the multi-domain. It neither preserves
privacy across multi-domain due to parent controllers having
network-wide view, nor deals with link failure at the switch
granularity level.

DISCO [16] introduced a semi-distributed architecture,
where controllers are in charge of their domains and pass the
information to other domains via a logical channel. Controllers
utilize this information to gain a network-wide view. It uses
mainly agents to share the network wide information across the
domains. However, it does not preserve privacy as a controller
can take over another domain’s controller in the case of
controller failure.

TABLE I. COMPARISONS OF RELATED WORK

Approach Architecture Area Privacy LF CF
Hyperflow Logically Single
[5] Centralized Domain No No Yes
Onix Logically Single
6] Centralized | Domain | YO | Yes | Yes
Kandoo Hierarchical Slngl§ No No No
[8] Domain
. (Single,
Zerrik ct al. Hierarchical Multi) No No Yes
[15] :
Domain
. (Single,
DISCO Semi- .
[16] Distributed Multi) No | Yes | Yes
Domain
(Single,
DMC Distributed Multi) Yes Yes Yes
Domain

The related work in terms of issues is summarized in Table
I. Five criteria are defined: Architecture, Area (single domain
(sd), multi-domain (md)), Privacy (isolation between multiple
controllers), Link failure at switch level (LF), and Controller
failure (CF). The DMC provides a distributed control plane in
the multi-domain networks based upon a messaging
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mechanism. The DMC scales the control plane that resiliently
interconnects multiple domains while preserving privacy by
sharing minimal information.

III. ARCHITECTURE AND IMPLEMENTATION

The overall architecture and implementation of the DMC is
presented and illustrated in three phases. First, the controller
design is mainly based on events and connected via the REST
(representational state transfer) interface. Second, routing
module, being responsible for computing intra- and inter-
domain routes, is described. Finally, the monitoring channel
that is subject to any link failure is elaborated.

A. Controller Design

Each domain is supervised by its own independent
controller that enables end-to-end services. It establishes a
control channel with its neighboring domains to exchange
minimal information. This enables end-to-end services without
the intervention of a controller in the neighbor’s network,
resulting in a private domain.

The controller is purely event driven. The overall
architecture is depicted in Fig. 1. It provides networking
services to its own domain and also communicates with the
neighboring domains via the control channel. The channel
provides a communication bus in the east/west directions with
neighboring domains. It is integrated with the REST interface
that allows the user to configure IP addresses on switch
interfaces. When data is posted or deleted via the REST
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Fig. 1. DMC overall architecture

interface, the controller generates an event that performs three
tasks: (1) updates information in the database, (2) updates
neighbor domains via the control channel, and (3) requests the
controller to perform actions such as setting up the interfaces of
a switch.

Light Weight Control Char
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A centralized database is utilized in each domain to store
the information from the neighboring controllers and from its
own domain. It stores information such as the categorization of
switches (edge and middle) and the network addresses of
switch interfaces. The information may be enhanced or used by
different modules. The core component provides all the
events/API’s of OpenFlow [3], enclosed in RYU [11], such as
packet in, packet out, etc.

RabbitMQ [9] is utilized to create a light-weight messaging
channel. The control channel exchanges minimal information
between controllers to carry out end-to-end services.
Information that is shared and stored in the database includes
the network addresses of switch interfaces in the domain. The
Routing Module enriches the information and utilizes it to
generate dynamic routes across the domain. The control
channel offers a publish/subscribe model among controllers,
where each controller is a publisher and a subscriber at the
same time.

Both reactive and proactive approaches are used in the
architecture in order to keep minimizing the load on controller.
All the routes installed by the controller in a switch are
prioritized. Proactive flows at the network level are enforced
on a switch by applying the REST interface, whereas Reactive
flows are calculated dynamically by the controller through the
inspection of the first packet. As the first packet is received by
the switch, it checks whether the destination network exists in
its flow table or not. If it exists, the packet is sent to the
controller that floods an ARP (Address Resolution Protocol)
request to all the nodes. The destination node responds to the
ARP request and hence, the controller knows the MAC address
and port connected to that host. Based on that information, the
controller installs the high priority flow to the switch.

B. Routing Module

The Routing Module is responsible for the calculation of
intra-domain and inter-domain routes. Once this module is
triggered, it pushes network level routes proactively using the
REST interface to the switch, whereas end-to-end routes are
calculated actively by the controller. Fig. 2 illustrates a typical
implementation of the DMC.

Domain A

Domain B —

Domain C

Fig. 2. A typical implementation of DMC
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Fig. 3. High level flow chart of routing module

The controller computes the intra-domain routes and sets
up gateways for the inter-domain communication. It identifies
whether if a switch is an edge or a middle switch. In the case
of an edge switch, it locates the connecting domain and sets up
the respective edge switch as the gateway. For the middle
switch, it finds the position in its domain and sets up its
respective gateways.

The high-level flowchart is illustrated in Fig. 3. For better
understanding, let’s consider the following two scenarios as
shown in Fig. 2:

a) Intra-Domain : To develop a route from Switch Al
to A3, since the controller has a global view of its own
domain, it recognizes a middle switch between the targets. It
identifies the path from Al to A3 via A2 and vice versa. Thus,
the routes are pushed to the respective switches by the
controller.

b)  Inter-Domain : The objective is to develop a route
between Switch A2 and B2 in Fig. 3. Switch A2 is in domain
A, and switch B2 is in domain B. In this case, the destination
network address is not registered in the controller’s domain,
and it does not have any view of other domains. It refers to the
database and determines which neighbor is registered with the
destination network address. After recognizing the domain, it
identifies the edge switch connected to that neighbor in Fig. 2.
Switch Al is directly connected to the Domain B, whereas
Switch A3 is also connected but it needs to pass Domain C in
order to reach its target. The controller picks the best edge
connecting switch on the basis of number of hops and
identifies the route via Switch Al to that domain.
Consequently, the controller pushes these infomation to the
corresponding switch and vice versa.
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C. Monitoring Module

It ensures end-to-end connectivity between nodes in the
case of a link failure across domains. The goals of a
monitoring module are to: (1) trigger an event when a link is
compromised, (2) identify an alternative route, (3) delete
previous routes, and (4) push new routes via the controller. An
OpenFlow event EventOFPPortsStatus is used to find
the status of the link. The Module is triggered when a link
failure occurs, resulting in retrieving the information of the
previous route from the database. It deletes the previous route,
computes an alternate route, and pushes the route to the switch
for further communication.

Consider a scenario in Fig. 2 where Host 2 of Domain A is
communicating with Host 1 of Domain B. Here, the routing
module has calculated a route where switch Al and switch Bl
are gateways of domain A and domain B, respectively. Once a
link failure occurs which results in an triggered event, the
monitoring module will be activated and will read the central
database and retrieves the previous route. It calculates the
second best route on basis of hop counts. The new path is now
where switch A3 and switch B3 will serve as the gateways of
domain A and B, respectively. Once the routes are calculated,
it deletes the previous routes and pushes the new ones via the
controller to the switches. It makes the inter-domain
connectivity more resilient, resulting in an efficient and
reliable network. In the meantime, it guarantees traffic
reachability with a fast convergence time.

IV. EVALUATION

In order to provide illustrations for how the DMC operates,
an emulation experiment was carried out. This is described
below.

A. Experiment Setup

In the experiment, three domains enclosed in a private
cloud having three hosts each are used. The topology depicted
in Fig. 2, represents a WAN covering the three domains. A
domain can be any network, ranging from enterprise to home.
The DMC is mounted on the RYU [11] control platform. Each
centralized controller is in charge of its own network domain
and exchanges minimal information with the neighboring
domains. The network is emulated by applying Mininet [17].
The Mininet [17] is hosted on a dedicated Virtual Machine
(VM), and controllers are hosted on separate VMs. A Single
machine is used to host all VMs, mininet and controllers VM
uses the LAN segmentation which gives the feel of a WAN.
The hosts, connected to the network domains, are user
terminals and provided with 100 Mbps links.

1) Flow Setup Time:

The flow setup time is one of the outstanding issues
highlighted in [20]. The reactive approach makes an SDN
architecture more dynamic and robust but also induces flow
setup delays. In the reactive approach, the first packet of the
flow is sent to the controller for the route calculation. The
DMC offers both approaches to minimize the load on the
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controller. It also allows the controller to respond to the flows
more quickly, making it robust and dynamic.

Considering the example in Fig. 2, proactive flows are
installed when the user configures the defined interfaces and
the routing module is triggered. These flows are only installed
on the network level, concluding that the flows still do not
have any node level knowledge. When a host makes a
communication path with another host in the same domain or
in another domain, the controller pushes the intelligence to the
switch at the node level and this makes the communication
possible.

The flow setup delay results obtained are presented in Fig.
4, indicating ten different inter-domain flow requests were
sent to the controller by different switches. Average response
time noticed from the controller is 5.2 milliseconds.

Initial Flow Setup Delay

econd
4 TN TN I ]

No. of Millise

No. of Packets

——Delay per packet Average delay

Fig. 4. Flow-setup delay

2) Packet Exchange:

This experiment was conducted to examine the effect of
the size of packets exchanged between the domains to make
the DMC functional. The DMC utilizes AMQP [10] packets to
exchange the minimal information that uses a mere few bytes.
The DMC efficiently reduces the additional overheads and
results in a very smooth communication. To determine the size
of the packets, Wireshark [19] is used. In the topology
depicted in Fig. 2, a controller shares less than 1 KB data with
other controllers, decreasing the overheads to a great extent
and helping the topology to scale and evolve without worrying
about the footprint of control information.

Considering the example in Fig. 2, every domain utilizes 3
switches and each switch represents a network. As the user
configures the DMC domain, the Control Channel passes the
network address information (i.e., internal address) and also
shares the edge address connecting to the neighbor of the
respective neighboring domains. In the topology depicted in
Fig. 2, three network addresses (there are 3 networks in a
domain) and one edge address is passed to every connected
domain.

Fig. 5 represents the results of the Packet Exchange from
one domain to another. Also, it displays the amount of
information in bytes to another domain. DMC reduces the
overhead to a great extent and doesn’t cause flow overhead in
the controller to controller communication. DMC promises to
dedicate controller for its domain while offering multi-
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controller communication. Each controller in a domain shares
their network addresses and connecting edge address to the
neighboring domain, and this information regarding message
size is depicted in Fig. 5. For further explanation, since each
domain has three different networks in the scenario presented
in Fig. 2, the first three bars in Fig. 5 denotes the network
addresses of each network listed under the domain, and final
bar represents the edge network address connected to the
adjacent domain. Total overhead of each message is 220 bytes,
consisting 88 bytes of header and 122 bytes of the content
body.
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Fig. 5. Message size of control packets from one domain to another

3) Link Recovery:

This experiment test how the monitoring module reacts to
the link failure and computes an alternative route in minimal
time. The TCP traffic is generated using iPerf [18] between
host A of Domain A and Host B of Domain B, as shown in
Fig. 2. The link was disconnected at time t = 2.2 s by the using
“link down” command. To determine the link recovery time,
packets are inspected using Wireshark [19] on both hosts. As
the link goes down, the monitoring module senses that,
immediately computes an alternative route and pushes it to the
switch. As shown in Fig. 6, the link was up again by t =3.7 s,
hence the link recovery time was 1.5 s.

Link Recovery in TCP traffic
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Fig. 6. Time taken for link recovery

V. CONCLUSION

This paper proposes a Distributed approach in Multi-
domain Controllers. The proposed model interconnects
multiple domains in a resilient, scalable and secure manner.
The DMC relies on the centralized controller in each domain
that exchanges minimal information across other controllers to
provide end-to-end network services. It implements a light-
weight control channel that reduces the additional overheads
by sharing only the host information to other domains. Unlike
other approaches, it secures privacy as the controller is solely
confined to the view of its own domain. The approach is
implemented on top of the RYU control platform [11] and has
been evaluated for inter-domain link failure.

Future work would include the addition of a master/slave
architecture within a domain, as that would be beneficial in the
case of a controller failure. If a controller fails within a
domain, the slave controller takes over and continues
exchanging information with neighboring controllers, and this
would result in a smooth communication throughout the entire
network.
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