
Architectural specifications and design for an automated
vulnerability resolver

A.Al-Ayed, S.M.Furnell, D. Zhao, I.Barlow and M.Tomlinson

School of Computing, Communication and Electronics, University of Plymouth, Plymouth,
United Kingdom.

Email : info@network-research-group.org

Abstract

Vulnerability management represents an essential task for the IT administrators, in order to safeguard systems
against exploitation by attackers and malicious software. However, the management task is non-trivial, as a
result of an increasing number of vulnerabilities and the workload implications associated with reading the
incoming advisories and acting upon the resulting information. As a step towards addressing the problem, this
paper presents the architectural design of an automated vulnerability resolver, which is designed to provide a
vendor-independent means of vulnerability notification and rectification for system administrators. The
architecture enables incoming advisory messages, from multiple sources, to be filtered and prioritised according
the specific requirements of the target environment, and then provides an automated facility by which any
associated patches can be obtained and deployed to affected systems. The paper describes the key elements of
the architecture, and illustrates the viability by means of a prototype system.

Keywords

Vulnerability management, Security.

1. Introduction

In recent years, published statistics have continually illustrated the significant scale of the
problem posed by vulnerabilities in system and application software. For example,
Symantec’s widely-cited Internet Security Threat Report shows that 1,432 new vulnerabilities
were identified during the first half of 2003 – representing a 12% increase over the same
period in 2002 (Symantec 2003). Meanwhile, statistics from CERT show that the total number
of vulnerabilities reported to them in 2002 and 2003 were 4,129 and 3,784 respectively.
While the latest figure represents a slight reduction, both figures are dramatically higher than
the figure for 2001, which had been just under 2,500 (CERT 2004).

In order to be aware of the vulnerability problem administrators are obliged to monitor
multiple sources of information rather than being able to rely upon one reliable source. For
example, if the organisation runs operating systems and applications from different vendors, it
is necessary to monitor different vendor advisories (e.g. by subscribing to their associated
mailing lists). However, the current approaches to alerting only provide a partial solution. For
example, Microsoft’s Strategic Technology protection system only solves the problem for the
recent versions of Microsoft Windows (i.e. it provides no help for other operating systems)
(Microsoft 2003). The SANS @RISK: The Consensus Security Alert mailing list provides

multi-vendor information, but only does so on a weekly basis for the most critical
vulnerabilities – thereby giving attackers an opportunity to exploit them before the notification
is received (SANS Institute 2004).

Of course, in order to achieve effective vulnerability management, a system administrator not
only needs to ensure that he receives notification of new vulnerabilities – he must also follow
this up by rectifying any that are relevant to his system. However, each of these processes can
be further decomposed into a number of sub-tasks. For example, once vulnerability
notifications are received, they potentially need to be filtered to exclude those that are not
relevant to the system configuration, then classified to group those that pertain to the same
software or target, and then prioritized to ensure that the most critical issues receive attention
first. Once this has occurred, the task of rectification often requires that appropriate patches
are downloaded, and then distributed to and installed upon the affected systems. The
traditional requirement has been for administrators to undertake these tasks manually.
However, with the dramatic increase in both the number of vulnerabilities and the speed at
which they are exploited, this approach is unsustainable because of the major workload
implications introduced as a result. This paper therefore considers an architectural design to
automate tasks within both the notification and rectification processes, and presents details of
a prototype system that has been developed by the authors.

2. An architecture for automated vulnerability resolution

The proposed approach is intended to provide a comprehensive solution to the vulnerability
problem, by enabling automation of both the notification and rectification phases. It is also
intended to offer a flexible approach that can be customised to suit an administrator’s needs,
regardless of the vendors and products involved in the target environment.

The first element in the automated agent is automated notification which will reduce the
problem of information overload for administrators, by filtration, prioritisation, and
classification of the incoming advisories, which will produce only the relevant messages
would enable administrators to direct their efforts more effectively, reducing the amount of
time lost following up irrelevant material and enabling genuine problems to be addressed more
quickly. This will solve part of the problem, but having obtained the relevant information they
then have to act upon it. The second element of automation would be an active vulnerability
resolver, capable of acting upon the notification data on behalf of the administrator.

The proposals contrast significantly with current marketplace solutions for vulnerability
resolution. Although some current scanners do include auto-update features that enable them
to be aware of and detect the latest vulnerabilities (eEye 2001), these require specific actions
on the part of the product vendors, who must release the associated update for their product.
Where products also include ‘fix-it’ technology, allowing administrators to rectify some issues
automatically, these often relate merely to configuration details and do not take care of
significant software upgrades or patches (Forristal and Shipley 2001). Some vendors, such as
Microsoft, have also introduced automated software update facilities, but some network
administrators are loathe to enable this feature in their clients as it may inadvertently harm
operations if patches are not applied in a controlled manner.

The overall process associated with the proposed architecture is illustrated in Figure 1 and
described below.

 A d v i s o r i e s M a i l i n g L i s t s

 A l l i n c o m i n g A d v i s o r i e s

 P a t c h e s

 C l i e n t 1 C l i e n t 2 S e r v e r

 E m a i l C l i e n t
M S O u t l o o k / I n b o x

A u t o m a t e d N o t i f i c a t i o n s
(F i l t r a t i o n s , P r i o r i t i z a t i o n ,
& C l a s s i f i c a t i o n)

D a t a b a s e f o r
t h e i n c o m i n g
a d v i s o r i e s

R e l e v a n t A d v i s o r i e s

 D o w n l o a d e r

 P a t c h D i s t r i b u t o r

D i g i t a l
S i g n a t u r e
V e r i f i c a t i o n s

 C o n t r o l l e r

V e n d o r
w e b s i t e

P a t c h e s
P r o f i l e (s e r v e r)

M o n i t o r

Figure 1 : Automated vulnerability resolution process

- Email Client. The Email Client receives the incoming advisories from the mail server

and saves them in the inbox. In this research, Microsoft Outlook is used to provide this
facility.

- Digital Signature Verification. The digital signatures on incoming advisories are
verified, before passing them to the vulnerability resolver.

- Automated Notifications. All incoming mails of the Email Client are read, and
vulnerability advisories are stored in a profile after verification of the vendor’s digital
signature. Classification, filtration and prioritisation of the advisories is performed
according to administrator-specified criteria. The Advisories Database stores all the
incoming advisories, along with classification data extracted from the original
message.

- Relevant Advisories. The advisories that are relevant to the local system are
displayed for the system administrator, and passed on for the rectification system to act
upon.

- Downloader. The Downloader acts upon the Relevant Advisories by connecting to the
vendor web site to download any specified patches, and consults the system
administrator’s policy for accepting them.

- Patches Profile. This module stores patches in a directory, which is later used by the
Patch Distributor.

- Patch Distributor. Accepted security patches are sent to the network clients and
servers.

- Controller. This module is designed for use by the administrator to configure the
notification and rectification modules.

3. A prototype implementation

The architectural approach has been implemented within a prototype system, the key elements
of which are described in the sections that follow.

3.1 Automated notification

In the ideal implementation, the notification system is designed to receive and filter messages,
using a generic vulnerability-reporting format, which the authors have defined in earlier work
(Furnell et al. 2002). However, in order to ensure some level of compatibility with existing
advisories, the prototype system allows mappings to be defined between the generic format
and the current format of vendor-specific advisories. Once a mapping is defined, the
administrator can subscribe to an advisory mailing in the usual manner (e.g. sending a
‘subscribe’ message to the list, or providing contact details via a subscription web page), and
build his own database of relevant advisories, based upon the local network configuration.
The database is searchable, enabling the administrator to find the advisories according to
desired characteristics (e.g. vendor, operating system, application version, severity, etc.), and
then prioritise the resulting rectification. The classification window is illustrated in Figure 2a
showing all searchable fields.

 Figure 2: (a) Filtering options and (b) Filtered list of vulnerabilities

The advantage of the approach is that advisories from multiple sources (and originating in
multiple different formats), can be dealt with from one interface and in a harmonised format.
Figure 2b presents the main interface of the notification system, which is similar to a standard
email client, displaying sender name, subject, received time and the like. In addition,
however, other fields such as the severity of the vulnerability are extracted from the original

source message, and can be used to filter and order the messages received. This information
enables the administrator to judge the importance of the message and can be used to draw his
attention to it. Finally, if an associated patch is available, the source URL link is highlighted
to the system administrator by displaying it on the upper part of the message form details (as
shown in the figure).

3.2 Automated rectification

The second element of the Automated Resolver addresses vulnerability rectification, and the
associated sub-architecture is illustrated in Figure 3. The main functionality is split into
server and client side elements, as follows:

• Server side modules

- Controller. This module enables the administrator to configure the rectification
system. On the server side (i.e. the administrator workstation), such configuration
would apply to the Downloader (e.g. behaviour characteristics to
consider/prioritise when downloading the patches), the Patch profile (e.g. save all
the downloaded patches into a profile directory), the Network profile (e.g. client
name, location, and IP address) and the Communicator (e.g. schedule the time of
installation). Meanwhile, on the client side, the Controller configures the Patch
profile (e.g. save all the downloaded patches into a profile directory) and can
initiate the installation of a patch on the client.

- Downloader. This module downloads the patches from relevant messages. It is
configurable via the Controller, to download a required patch either manually or
automatically. The downloaded patches are saved into the patches profile,
irrespective of the operating system of the patch.

- Patches Profile (server). This module saves the patches on the server
(Administrator workstation).

- Distributor. This module distributes the patches to network clients using this IP
address, either automatically at a scheduled time, or manually by selecting the
patch and then sending it to required clients.

- Network Information. This module is a database for network information,
including each machine in the network, its name, location, and IP address.

• Client side modules

- Client. This module represents the target machine to which the patch will be sent

and installed upon.
- Patches Profile (client). This module saves the patches on the client when

received from the server side.

 Hyper link Internet

 Patch (ven)

Figure 3 : Automated rectification system

A prototype of the rectification sub-system has been implemented in a referenced network
environment on a Windows platform, and provides a proof-of-concept for the ideas presented
in the main architectural work. It demonstrates the ability of an automated agent to initiate
appropriate rectification actions to a number of actual vulnerabilities, based on the reference
environment’s network configuration. The main program including the Notification system,
Rectification system, Downloader, Distributor, and Communicator are installed on the server
(system administrator workstation). The client information (such as name, location, and IP
address) is saved in a database on the server, and the administrator can send the patches
manually or automatically by nominating the target client(s). The clients run a Communicator
program to communicate with the server. After patches are received from the server they are
saved into the download profile. After downloading, the administrator can install the patches
in the client(s) at any time without any need to connect to the Internet. Figure 4 illustrates the
patch distribution window, from which the administrator selects the patch to be deployed, and
the client(s) to which it should be sent.

Automated notification
(Relevant advisories)

 Controller

Network
information

Patches
Profile
(server)

Vendor
website

Client

Downloader

Distributor

Communicator

Patches
Profile
(client)

Server (Administrator workstation)

Client

Patch

Figure 4 : Patch distribution interface

4. Conclusions

This paper has outlined the architecture of an automated vulnerability resolver, and presented
details of a prototype implementation. The automated notification system verifies the source
of the incoming advisories, and enables messages from multiple vendors to be processed and
prioritised within a single administrative interface. This is supported by an automated
rectification system that obtains required patches and allows them to be deployed to client
systems.

Although the prototype is functional, there are still some issues to be addressed. Principal
amongst these is further development of the rectification system to guard against it causing
inconvenience or indirect denial of service to legitimate users (e.g. further options and
intelligence within the system to ensure that it does not take the system down to install a patch
whilst users are working). Furthermore, the framework must ensure the validity of the patches
and corrections that it tries to apply, so as to prevent the rectification agent being misused by
hackers as a means of getting the target system to accept malicious code. Nonetheless, the
prototype system has succeeded in providing a harmonised front-end for administrators who
would otherwise have to manually inspect and filter advisories from multiple sources, and then
manually retrieve any associated patches. In this sense, several elements of the traditional
administrative overhead have already been reduced.

References

CERT. 2004. “CERT Statistics 1988-2003”, CERT Coordination Centre.
http://www.cert.org/stats/cert_stats.html

eEye. 2001. “Retina: The Network Security Scanner”, eEye-Digital Security.
http://www.eeye.com/html/assets/pdf/retina_whitepaper.pdf.

Forristal, J. and Shipley, G. 2001. “Vulnerability Assessment Scanners: Detection Result”, Network Computing.
8 January 2001. http://www.networkcomputing.com/1201/1201f1b1.html

Furnell S.M, Al-Ayed A., Barlow I.M., and Dowland P. S. 2002. “Critical awareness-The problem of monitoring
security vulnerabilities”, Proceedings of European Conference on Information Warfare and Security, 8-9 July
2002, Brunel, UK, pp85-92 2002.

Microsoft Corporation. 2003. “Microsoft Strategic Technology Protection Program”, 2 July 2003.
http://www.microsoft.com/security/mstpp.asp.

SANS Institute. 2004. “SANS @RISK: The Consensus Security Alert”,
http://www.sans.org/newsletters/risk/.

Symantec. 2003. "Symantec Internet Security Threat Report, Symantec", September 2003.
http://ses.symantec.com/PDF/SISTR_sept2003_all.pdf.

