
Proceedings of SEIN 2008

92

Software Industrialization in Systems Integration

M.Minich1,2, B.Harriehausen-Mühlbauer2, C.Wentzel2 and A.D.Phippen1

1Centre for Information Security and Network Research, University of Plymouth,
Plymouth, United Kingdom

2Institute for Applied Informatics Darmstadt (aiDa),
University of Applied Sciences Darmstadt, Germany

e-mail: matthias.minich@plymouth.ac.uk

Abstract

Today’s economy is in a permanent change, causing merger and acquisitions and co
operations between enterprises (Vogler, 2004). Consequential process adaptations and
realignments usually result in systems integration and software development projects.
Processes and procedures to execute such projects are still reliant on craftsmanship of highly
skilled workers (Greenfield, 2004b). A generally accepted, industrialized production,
characterized by high efficiency and quality, seems inevitable.

In spite of this, current concepts of software industrialization are aimed at traditional software
engineering and do not consider the particularities of systems integration. From the author’s
point of view it distinguishes itself from traditional software development in various points.
The present work, and the subsequent research, will therefore focus on the implementation of
industrialization concepts in the area of systems integration. The present paper briefly
describes the idea of software industrialization, depicts current concepts from science,
discusses the particularities of systems integration and suggests further areas of research. The
objective of the suggested research should bring the area of systems integration closer to an
industrialized production, allowing a higher efficiency, quality and return on investment.

Keywords

Software Industrialization, Systems Integration, Software Product Lines, Software
Factories, Model Driven Engineering, Component Based Development.

1. Industrialization

Industrialization can be defined as the spreading of standardized and highly
productive methods in production of goods and services in all economic areas
(Brockhaus-Enzyklopädie, 1989; Butschek, 2007). The principle of industrialization
is seen as a necessary step for economic growth, technological advances and
increasing wealth. Only industrial production methods allow to produce a
multiplicity of goods in a sufficient amount and quality (Brockhaus-Enzyklopädie,
1989).

From a production point of view, omitting prerequisites such as the availability of
resources and commodities or communication and transportation technologies, the
key concepts of industrialization can be outlined as follows:

Chapter 3: Internet and Applications

93

• Standardization
• Specialization
• Systematic Reuse
• Automation

These key concepts are often implemented in an “[…] organization of work known
as the factory system, which entailed increased division of labour and specialization
of function” (Encyclopedia Britannica, 1991). As of today, the above principles can
be found in almost all industries at different levels of penetration. Standardization
and specialization advance the level of automation as e.g. in the electronics industry,
whereas creative tasks (which cannot be standardized), such as product design, are
still performed by highly skilled workers.

2. Current concepts of industrialized software development

Software development is “[…] slow and expensive, and yields products containing
serious defects that cause problems of usability, reliability, performance and
security” (Greenfield and Short, 2004). It can be assumed that most of a program’s
functionality has already been developed in previous projects. If a consistent level of
reuse and automation can be achieved, significant improvements in efficiency and
quality can be made, which come along with noteworthy cost savings. In the
following software development concepts are depicted which show signs of
industrialization, as discussed in the previous chapter.

2.1. Model Driven Engineering

Model Driven Engineering aims to raise the level of abstraction of software
engineering to fill the gap between the problem solution to be implemented and the
actual technology utilized to do so. Once a suitable level of abstraction is found, the
description of the solution has to be refined by adding previously omitted details
until an executable implementation is available. The distance between the description
and technical implementation characterizes what is commonly referred to as the
abstraction gap.

Raising the level of abstraction has been researched on in the 1980s already with the
upcoming of CASE-Tools. They encouraged development methods based on
graphical representations of software with e.g. state machines, structure diagrams or
dataflow diagrams (Schmidt, 2006) to generate source code. The graphical
representations however were too generic to precisely describe the intended solution
and did poorly map to the underlying technologies. The result was highly complex
source code which had to be altered by hand. The corresponding models were out of
date very soon as the CASE tools could hardly depict manual changes to the code.

To overcome previously described difficulties, Model Driven Engineering (MDE)
combines two important approaches: Domain Specific Languages (DSLs, also
referred to as “Domain Specific Modelling Languages”) and Transformation Engines
and Generators (Schmidt, 2006), as described in the following.

Proceedings of SEIN 2008

94

2.1.1. Domain Specific Language

A Domain Specific Language (DSL) models concepts found in a specific domain,
such as financial online services, e-commerce applications, CRM systems, or
anything else clearly delimited. The characteristics of a specific domain are
represented by metamodels, precisely specifying semantics and constraints
associated with this particular domain (Schmidt, 2006).

“A modelling language is a visual type system for specifying model-
based programs. It raises the level of abstraction, bringing the
implementation closer to the vocabulary understood by subject
matter experts, domain experts, engineers and end-
users.”(Greenfield and Short, 2004)

One of the most successful examples of a Domain Specific Language can be found in
WYSIWYG-Editors for graphical user interfaces. While in the beginning GUIs could
only be built by highly skilled developers, today’s wizards and code generators allow
almost everyone to develop powerful user interfaces. What made this possible was
the definition of a highly specialized, domain specific language, implemented in GUI
design tools. Their elements (buttons, panes, text fields, etc.) can be combined based
on clearly specified rules (e.g. Buttons can only appear within panes or windows
etc.). Other well known examples are Event Driven Process Chains or the Entity
Relationship Model (Beltran et al. 2007). With DSLs it should for instance be
possible to assemble an online shopping system with credit approval, product
catalogue and payment system without having to worry about the particular
implementation and interaction of the components. To sum it up, DSLs have several
important advantages (Beltran et al. 2007):

• Specifications can be described faster and more precise with DSLs
• Change requests can be captured precisely and unambiguously with DSLs
• Specifications are context free and leave no room for interpretations
• Code generators can be built for a specific domain and are thus more

powerful and easier to handle as e.g. former CASE tools
• Transforming a model to source code by a generator is less error-prone than

manual implementation for each product

2.1.2. Transformation Engines and Generators

Once a software system in a defined problem space has been specified with the help
of the appropriate DSL(s), the thereby created set of models can be transformed to
either intermediate models, or directly into source code. The former can be useful if
the abstraction gap between a problem domain and the technical implementation
capabilities is too large, e.g. if a specified system is supposed to run on different
platforms - intermediate models would then take care of the particular requirements
of these platforms. To generate subsequent artefacts out of models, transformation
engines or code generators need to be provided together with meta-models of the
source and target model, as well as a set of mapping rules between them. Whereas
the meta-models are already available by the definition of the Domain Specific

Chapter 3: Internet and Applications

95

Languages, the transformation rules must be expressed within a transformation
language (Pham et al. 2007).

In their book “Software Factories”, Greenfield and Short address Model Driven
Engineering as one of the key innovations for software industrialization. They follow
the differentiation of transformations as depicted by Czarnecki in (Czarnecki, 1999),
which can be vertical, horizontal or oblique. Vertical transformations refine an
existing model to a lower level, more concrete model or directly to source code. An
example of vertical transformation is the transformation of a model describing a
business process to a more detailed one, as for example the distribution over different
web-services (Greenfield and Short, 2003). Horizontal transformations in contrast
may either be refactoring or delocalizing transformations. “Refactoring
transformations reorganize a specification to improve it’s design without changing
it’s meaning”, whereas “delocalized transformations can be used to optimize an
implementation or to compose parts of an implementation that are specified
independently” (Greenfield and Short, 2003). The former may for example adapt a
model to a given architecture of a product line, whereas the latter may weave a
security framework into the existing model.

2.2. Component Based Development

The idea of separating software into delimited parts out of which applications can be
stitched together as needed, is probably as old as software development itself. It first
appeared in literature at the NATO Software Engineering Conference where M.D.
McIlroy suggested that we need a software component sub industry, “available in
families arranged according to precision, robustness, generality and time span
performance” (Software Engineering, 1968). In his book about component software
(Szyperski, 1998), Szyperski defines a component as follows:

“A software component is a unit of composition with contractually
specified interfaces and context dependencies only. A software
component can be deployed independently and is subject to
composition by third parties”.

A component requires a defined environment and interacts with this environment via
defined interfaces, without revealing the actual implementation of the functionality it
provides. Ideally, components are language neutral and neither platform constraint,
nor application bound. Based on Brown (Brown and Wallnau, 1996) and adapted by
Haines and Foreman (Haines et al. 1997), component based development can be
subdivided into four major steps:

During the first step (component qualification) existing components are discovered
and evaluated against their potential to be deployed in another context. The result of
the qualification defines whether certain functionality can be integrated from existing
artefacts or must be manually developed. Component qualification may include
functional and non-functional requirements such as algorithms or interfaces and
quality or performance.

Proceedings of SEIN 2008

96

If required, suitable components can be adapted in the next step. Adaptations could
be wrappers for underlying platforms or the integration of certain aspects as e.g.
security concepts. Components can be categorized into white-box, grey-box and
black-box ones (Haines et al. 1997). The former allow significant changes to the
component at the cost of compatibility and replace ability. Adaptations to the latter
have very little negative side effects, but may not allow the required flexibility.
Grey-Box components do not allow changes to their source code but provide
extension languages or APIs (Haines et al. 1997) to adapt them to specific
requirements.

In a third step the previously qualified and adapted components are assembled to a
new application. This assembly is usually built on frameworks which provide the
implementation base for the components. „It is therefore very important that there
exist a context in which […] [components] can be used“ (Crnkovic et al. 2002).
Frameworks furthermore overlap with patterns, which „[…] define a recurring
solution to a recurring problem“ (Crnkovic et al. 2002).

The final step focuses on maintenance and enhancement. Components are replaced
with their improved or debugged versions or with totally new ones, combining the
functionality of multiple already existing ones (Haines et al. 1997).

2.2.1. Current implementations and frameworks

The IT landscape provides several implementations of component based
development, which are primarily concerned with the technical mechanisms of
enabling components to communicate with each other. The most prominent
representatives are CORBA, COM/DCOM, Web Services and EJBs:

• CORBA: The Common Object Request Broker Architecture (CORBA)
defines a standardized model for inter-component communication and
defines specific operations which describe the collaboration of distributed
systems. The central concept of CORBA is the Object Request Broker
(ORB), through which different components communicate with each other
(Lexikon der Kommunikations- und Informationstechnik, 2001). It takes
requests, locates the required component and forwards the request
transparently. Interoperability between languages is ensured by an Interface
Definitions Language to describe the external boundaries of a component in
a standardized way (Computer und Informationstechnologie, 2005), and
language specific ORB implementations.

• COM/DCOM: The Distributed Component Object Model is an architecture
developed by Microsoft for the communication between components, based
on a Windows operating platform. It uses proxies, providing interfaces and
stub code by abstract methods and memory pointers (Computer und
Informationstechnologie, 2005). They can be seen as a virtual substitute,
forwarding requests to the actual component. Communication within a
single computer system occurs directly through shared memory, for
distributed systems it occurs via Remote Procedure Calls (distributed COM

Chapter 3: Internet and Applications

97

or DCOM). Interfaces of components are described with the Microsoft
Interface Definition Language (MIDL). To allow interoperability between
different programming languages, any data is converted into a normalized
format. However, support for proxies and component discovery is primarily
available for windows platforms. (Computer und Informationstechnologie,
2005).

• Web-Services / SOA: One of the most recent approaches is depicted by the
Service Oriented Architecture (SOA). It aims at the provision of business
functionality as clearly delimited services in order to avoid the “[…]
duplication of code […] for enabling similar business functions across
multiple business processes, spanning one or more lines of businesses”
(Dan et al. 2008). Ideally, services are delimited, available in a network,
have published interfaces, are platform independent, and registered in a
repository. The most prominent implementation, Web Services, is based on
three major concepts: Universal Description Discovery and Integration
(UDDI) for component registration and indexing, Web Service Description
Language (WSDL) for a precise, XML-based description of the supported
functionality, methods and parameters, and the Simple Object Access
Protocol (SOAP) for XML-based communication between service
consumer and provider, encapsulated in common internet protocols such as
HTTP for example.

• EJBs: Enterprise Java Beans is a component oriented framework for
distributed information systems. It is based on the J2EE library and allows
the invocation of remote methods via Web Services, IIOP (Internet Inter
ORB Protocol, based on CORBA), Native Java, or JMS (Java Message
Service). While Java and JMS require a Java implementation on both sides
of the connection, Web Services and IIOP allow platform independent
communication between different components. However, the EJB concept
does not offer any transformation of data.

While MDE or CBD were successfully introduced in smaller areas, different
technologies, platform dependencies or high initial investments anticipated the
successful integration of already existing components into new applications across-
the-board. Apart from Web Services, CORBA can be seen as the dominant model for
a corporate wide system landscape as it is platform and language independent and an
open standard, already in its third generation (Lewandowski, 1998; Schryen, 2001).
Despite some experimental adaptations, COM/DCOM relies on concepts of the
Microsoft Windows platform, which prevent it from being adopted by major
business software providers which usually offer their products on different platforms
(e.g. UNIX). The EJB concept may be platform independent, but relies on Java
implementations on both sides. From a market perspective, only CORBA and
COM/DCOM have enough momentum, supplier support and a large enough feature
set to serve as long term technologies (Lewandowski, 1998).

Web Services in contrary focus more on the distributed and software-as-service
aspect and offer their services platform and language independent over networks.

Proceedings of SEIN 2008

98

The author therefore expects CORBA to become the major concept for component
oriented and distributed, but company wide system landscapes. Web services may
find their focus in specific services offered by external providers over the internet,
such as credit approval by financial institutions for example.

2.3. Software Product Lines and Software Factories

Greenfield and Short suggest the term “economies of scope” to describe the basic
principle of software industrialization. “Economies of scope arise when multiple
similar but distinct designs and prototypes are produced collectively, rather than
individually” (Greenfield and Short, 2004). Economies of scale in contrast arise
when several copies of exactly the same product are created. As this can be done
very easily with software, economies of scale do not offer any advantages.
Economies of scope can be compared to a car manufacturer for example. Besides
model specific body parts, car makers mostly assemble their cars from standardized
components like engine blocks, gearboxes or electronic control units. Depending on
the customer’s wishes, specific components are selected and assembled to a complete
car. Most of the components may also be used in another model.

The concept of software product lines requires to separate product development from
product line development. The former produces the actual software product, while
the latter produces all the required assets to support the product development
process. The concept furthermore groups closely related products to a product
family. This has the advantage that the assets of a product line are more specific and
powerful to a problem than generic concepts could be. “A software product line
systematically captures knowledge of how to produce the assets, such as
components, processes and tools, and then applies those assets to produce the family
members” (Greenfield and Short, 2004).

In their book “Software Factories”, Greenfield and Short take the software product
line approach one step further by introducing the concept of software factories.

Fixed Assets

Product Specification

Customized Tools

Product Implementation

Extensible Tools

Product Development

Product Line Definition

Problem Domain Scoping

Solution Domain Scoping

Architecture Development

Requirements Mapping

Product Development Process

Asset Provisioning

Asset Packing

Product Line Implementation

Product Line Design

Product Line Analysis

Product Line Development

Software
Factory
Schema

Variable
Assets

Fixed Assets

Product Specification

Customized Tools

Product Implementation

Extensible Tools

Product Development

Product Line Definition

Problem Domain Scoping

Solution Domain Scoping

Architecture Development

Requirements Mapping

Product Development Process

Asset Provisioning

Asset Packing

Product Line Implementation

Product Line Design

Product Line Analysis

Product Line Development

Software
Factory
Schema

Variable
Assets

Figure 1: A Software Factory

Chapter 3: Internet and Applications

99

It proposes a way to “categorize and summarize development artefacts, such as XML
documents, models, configuration files, build scripts, source code files, […], in an
orderly way […]” to define relationships and dependencies among them (Greenfield
and Short, 2004). Given a certain product, the software factory identifies the required
artefacts and assets of the respective product line in order to develop the product. It
does so by defining software factory schemas which exactly define which assets like
micro-processes, frameworks, architectures and tools or domain specific languages,
are to be used to produce a family member, as illustrated in the previous figure.

To implement the idea of software product lines and software factories, Greenfield
and Short demand the further development of four critical innovations (Greenfield
and Short, 2004):

• Systematic Reuse: Technologies like CORBA, J2EE or COM/DCOM offer
the basic principles required for reuse. However, the main problem with
such technologies is the lack of a specific context. Components are too
generic to cover all possible implementation scenarios in arbitrary contexts
(Greenfield and Short, 2004). Components developed in a specific context
may be reused more easily in a similar context. A component used for
payment verification can be much more powerful if it is only used within
the context of web based applications and not within mainframes as well.

• Development by Assembly: This critical innovation subsumes five
prerequisites required to support development by assembly. Platform
independent protocols to avoid interoperability problems between
components. Self description (or contracts), including assumptions,
dependencies and behaviour, allow for proper selection and validation of
assemblies. To be able to customize, a deferred encapsulation of existing
components is necessary, which “[…] reduces architectural mismatch by
waving adaptations into published components” (Greenfield and Short,
2004). To reduce the risk of architectural mismatch, architecture driven
development must be implemented by imposing assumptions and
constraining design decisions. Similar to web-services, the fifth prerequisite
suggests the assembly of components by orchestration. The latter can be
seen as an automated combination and functional management of
independent components.

• Model Driven Development: Further automation of software development
requires formal specifications in a way humans and machines can
understand. Thus MDD uses formalized models to precisely capture
developer intend. The models can then be used to either refine or transform
the requirements to a more detailed layer or to generate code artefacts out of
them. Formalized models can be expressed in a Domain Specific Language,
which is designed for an explicit purpose such as a software product family.
“A well-defined DSL is a powerful implementation language, providing
much greater rigor than a general purpose modelling language like UML”
(Greenfield and Short, 2004). Additional improvements can be achieved if

Proceedings of SEIN 2008

100

the abstractions of the model are used to generate a framework which
guides the developer in completing the application.

• Process Frameworks: As with components, many process frameworks are
too abstract and thus require rethinking about how to apply a process to a
specific task. More specialized processes centre on the development of
assets of a product within a software product line. Further gains in
productivity can be achieved by integrating these processes into
development environments, guiding and constraining the developers in their
work. (Greenfield and Short, 2004)

As can be seen from the previously mentioned four critical innovations, the concept
of software product lines, and software factories respectively, combines prevailing
concepts like Model Driven Development (which can be seen as a part of Model
Driven Engineering), Component Based Development and Software Reuse
technologies into a holistic approach of software industrialization.

3. Particularities of Systems Integration

The field of systems integration (SI) comes with several particularities,
distinguishing it from the domain of conventional software development. Systems
integration has to challenge a multiplicity of technologies, once only technology
combinations and a very high complexity of to be integrated systems. According to
Vogler in (Vogler, 2004), potential problems can furthermore be categorized as
follows:

Problem Area Problems
Know-How Lack of knowledge about potential solutions

Unknown consequences of integration decisions
Management Suboptimal degree of integration

Unknown integration relationships
High time pressure within the integration project
No methodical approach
Unknown complexity of the project
Lack of standards

Information
systems

Heterogeneity of systems to be integrated
Lack of flexibility in legacy systems
Data redundancy within different systems

Table 1: Integration problems and problem areas

3.1. Know-How related

The problem area related to know how issues, embraces the lack of knowledge about
potential solutions for a given problem. The multiplicity of different systems and
technologies make it difficult for system engineers to select the optimal
implementation. It is for example very unlikely that an expert for Siebel CRM
Systems will also be an expert for SAP. Besides the technical implementation, it is

Chapter 3: Internet and Applications

101

also necessary to consider the pivotal business process during integration (Vogler,
2004). Furthermore, companies may not be aware of solutions and products available
on the market and may not be able to develop integrated concepts for their IT
landscape.

Another know-how related problem is the uncertainty of consequences if a system in
a highly integrated environment is altered. This becomes especially evident as
systems integration often occurs on a per project basis, implementing merely the
prevailing requirements without aiming at a company wide integration concept. This
may lead to n*(n-1) relationships between different systems and thus requires a very
careful consideration of affected systems before conducting a change.

3.2. Management related

One problem is the suboptimal degree of integration. According to (Vogler, 2004),
two extremes can be found: isolated applications or highly integrated ones with peer-
to-peer characteristics. The former is usually specialized in a particular task, not
providing any interfaces to link it to other systems. While the former is hard to
integrate, the latter is tightly interwoven with the IT landscape. Only very few
enterprises consistently use a common architecture like a messaging middleware for
example (Longo, 2001; Vogler, 2004).

Unknown integration relationships impose a problem on ad-hoc changes to
information systems. Short and simple workarounds to quickly fix a problem may
not be documented and thus remain unconsidered for potential changes. This lack of
transparency prevents completeness and consistency checks for interfaces (Vogler,
2004).

High time pressure within the integration project may lead to the omittance of
documentation and testing. Unfortunately both are crucial in an integrated
environment as other systems rely on the interface descriptions and a credible service
provisioning. However, a trade-off must be found between the efforts put into
documentation and the benefits it generates.

To solve complex problems in software engineering, methodologies are being used
(Heinrich et al. 2004) such as the Rational Unified Process or V-Model XT. While it
is performed for years now, still no generally accepted methodology or approach for
systems integration has been found (Vogler, 2004; Engel, 2006). This shortcoming is
assumed to origin from the fact that integration is often seen as a purely technical
problem which has to be resolved after completion of the underlying systems
(Gassner, 1996).

Unknown consequences of changes to the IT landscape, unknown integration
relationships or highly interweaved systems lead to a very high complexity which
may remain unidentified, thus leading to increased cost and time to complete.

Similar to the previously depicted missing methodologies, systems integration also
lacks generally accepted standards. This shortcoming is caused by the heterogeneity

Proceedings of SEIN 2008

102

of applications (Vogler, 2004) and the fact that a prospective integration is
unforeseeable during the development of applications. However, recent work in the
field of Enterprise Application Integration (EAI) has developed fist concepts and
frameworks, usually based on interapplication middlewares or Service Oriented
Architectures, as for example in (Lee et al. 2003; Gorton and Liu, 2004; Sutherland
and van den Heuvel, 2002; Strüver, 2006).

3.3. Information Systems related

One of the core issues or particularities of systems integration is the heterogeneity of
to be integrated systems (Longo, 2001; Stickel, 2001; Riem, 1997). Differences can
not only be found on a technical layer (programming languages, operating systems)
but also on a logical and conceptual layer (system architecture, frameworks, data
structures) (Vogler, 2004). Both layers have a major influence on an adequate
integration and thus need to be considered when implementing industrialization
concepts in the field of systems integration. This heterogeneity anticipates the
formation of standards as e.g. company wide integration architectures, which in turn
leads to a discontinuity of media (media disruption). Furthermore, heterogeneity is
reinforced by the fact that integrated systems are usually connected on a peer-to-peer
basis with each other, leading to n*(n-1) relationships. As of the high costs of
enterprise information systems, applications are usually not replaced frequently.
“[…] SI aims at building applications that are adaptable to business and technology
changes while retaining legacy applications and legacy technology as long as
possible” (Hasselbring, 2000). This disadvantage further complicates systems
integration due to insufficient reusability, outdated data management and user
interfaces, monolithic constructions or inadequate maintainability (Vogler, 2004).

If different applications are merged into an integrated system, data and even
functional redundancy may occur. Unless one data storage is a definite master or
synchronization takes place, each transaction has to ensure that it works with the
most actual data to prevent data inconsistency. In addition to the syntactical
consistency of data, their semantics must also be ensured across different
applications.

4. Industrialization in Systems Integration

The focus of the intended research is aimed at the application of industrial
production principles in the specific domain of systems integration. As described in
chapter 3, systems integration differs in certain areas from the development of
traditional software products. Especially the heterogeneity of products is one of the
major differences (Longo, 2001; Stickel, 2001; Riem, 1997), which in turn leads to
the question whether currently discussed industrialization concepts are suitable.

4.1. Software Factories in regard of SI particularities

The present section will briefly discuss the SI particularities (q.v. Table and chapter
3) in context of industrialized software development. It thereby centres around the
idea of Software Factories, as the underlying concept comprises Component Based

Chapter 3: Internet and Applications

103

and Model Driven Development (as part of Model Driven Engineering), together
with Software Product Lines, code generation and systematic reuse (Greenfield and
Short, 2004). From the author’s point of view, Software Factories is currently the
most advanced and comprehensive concept of software industrialization. Software
Factories concentrate on the following four critical innovations to be introduced.

4.1.1. Systematic reuse

Greenfield & Short (Greenfield and Short, 2004) suggest to partition software
engineering efforts into clearly delimited product lines. In doing so, design and
development occur in a particular context, sharing common features and solving
common problems conjointly. Product families may either be tailored around
complete products or a series of related components. They concentrate on reusable
implementation artefacts, as well as frameworks, processes and tools.

“Program families enable a more systematic approach to reuse, by
letting us identify and differentiate between features that remain
more or less constant over multiple products and those that vary”
(Greenfield and Short, 2004).

With reference to the particularities of systems integration, the multiplicity of
different technologies, caused by high heterogeneity, inflexible legacy systems and
different data sources, seems to be a major drawback to the definition of
distinguished product lines. In a product line covering Customer Relationship
Management (CRM) systems for example, products may be highly integrated with
third party logistics and finance systems. Including all eventualities by supporting
attached systems undermines the advantages of a delimited context, while excluding
them will force development to occur outside the industrialized concepts. An
additional drawback is the de-facto development of one-off solutions. Barely any
development operates in the same environment or is interconnected with the same
type of systems. The initial set-up cost for software product lines may therefore be
contraindicative as the return of investment cannot be ensured.

4.1.2. Development by Assembly

The second critical innovation is the logical consequence of systematic reuse.
According to Greenfield & Short (Greenfield and Short, 2004), development by
assembly itself has certain requirements which must be met: Platform independent
protocols (e.g. XML), self-description of components (formalized and enhanced
meta-data within components), deferred encapsulation (allowing to interweave new
aspects), assembly by orchestration (machine controlled interaction and management
of components), and architecture driven development (to promote the availability of
well-matched components) (Greenfield and Short, 2004). The latter is seen to be
most critical for development by assembly.

With regard to systems integration, the author does not see any major difficulties to
technically apply development by assembly. However, the assembly approach relies
on systematic reuse and thus on a methodical approach in a clearly delimited context,

Proceedings of SEIN 2008

104

which may not be easy to define. This context also has an influence on the
availability of predefined software architectures, as well as the number of reusable
components. Furthermore, systems integration standards as e.g. service oriented
architectures are not common until now (Lee et al. 2003; Gorton and Liu, 2004;
Sutherland and van den Heuvel, 2002; Strüver, 2006). The most important challenge
to be met is the definition of software architectures and standards in which
development by assembly may occur.

4.1.3. Model Driven Development

Model Driven Development, and in a greater sense Model Driven Engineering, raises
the level of abstraction to alleviate increasing complexity and expressing domain
concepts more efficiently (Schmidt, 2006) and context free. It consists of domain
specific modelling languages, along with transformation engines and generators. The
former allow a powerful description of the intended products of a product line,
whereas the latter provide model transformation to a lower, more specific layer or
eventually the generation of source code.

With regard to systems integration, the efforts required to define a domain specific
language could become an obstacle, especially if applied to very small product lines.
Furthermore, to automate the development process by generating source code or
transforming models to a lower level, transformation engines and code generators
have to be implemented. As directly related to domain specific languages, they are
also product line specific. The integration aspect itself may be an additional
challenge. Domain specific languages, models and architectures have to be
compatible between the product lines whose products are to be integrated with each
other.

4.1.4. Process Frameworks

“The key to process maturity is preserving agility while scaling up to high
complexity created by project size, geographical distribution, or the passage of time”
(Greenfield, 2004a). While process frameworks like RUP, XP or Waterfall XT are
widely available, Greenfield & Short (Greenfield and Short, 2004) demand an
extensive customization of development processes to balance cumbersome
formalism and agility. Depending on the selected product line features, the process
framework can be further customized to support the development of the actual
software. In a subsequent step, the process definitions may be incorporated into
development tools, providing active guidance to the developer without hindering
agility.

Yet again it comes back to clearly delineating a specific context, which is currently
not given in the domain of systems integration. As with model driven development,
process frameworks also need to be compatible to each other between different
product lines in order to simplify integration. The incorporation of process
definitions and process imposed restrictions or boundaries into development tools is
a requirement which can hardly be solved by software development companies. The
author assumes this to be subsequently solved by tool suppliers as software

Chapter 3: Internet and Applications

105

industrialization advances and becomes more accepted as a new development
paradigm. It is therefore beyond the scope of the intended research.

4.2. Areas requiring further research

As can be seen in the previous section, existing concepts of software industrialization
may not necessarily suit the particularities found in the field of systems integration.
Thus further research is required to either adapt or enhance existing concepts, while
considering how to align organizational structures to support the application of
industrial production paradigms. Out of the previous sections, certain key questions
arise, which will be briefly discussed in the following.

4.2.1. Organizational aspects

Organizational aspects focus on the surrounding conditions of industrialization in SI.
They should be carefully considered before performing a paradigm shift throughout
the organization.

1. How can we define areas of specialization in systems integration,
considering the multiplicity of different technologies and their rare
combinations within integration products?

The definition of narrow and clearly delimited problem domains seems inevitable for
an industrialized production. With regard to systems integration, how can we carve
out the combination of business domain knowledge with a multiplicity of different
technologies? What is a reasonable organizational structure and how can we ensure
that integration requirements can still be mapped onto the new organizational
structure?

2. How can we measure the degree and success of software industrialization
in systems integration?

In large organizations, efficient steering mechanisms are required. Conventional
software engineering provides measures like function points per time unit for
productivity or defects per function point for quality. But what are reliable measures
to manage and monitor an industrialized production? Can we develop something like
an Industrialization Maturity Model, similar to CMMI for example?

4.2.2. Technological aspects

The technological aspects focus more on the actual implementation of critical
innovations and key concepts within the context of systems integration.

3. Can we apply essential innovations of software industrialization to
delimited problem domains within systems integration?

Given that an expedient classification of activities into e.g. product lines or services
has taken place, can we still apply the essential innovations such as systematic reuse,

Proceedings of SEIN 2008

106

development by assembly, model driven development and specialized process
frameworks?

4. Are these essential innovations suitable for all application domains within
systems integration, such as SAP, Siebel or PeopleSoft?

Many projects in the field of systems integration include development work for more
sophisticated IT systems such as SAP for example. As these systems are often
customized by using graphical development tools, how do concepts like component
oriented or model driven development / engineering fit?

5. Which preconditions must be met to automate e.g. model transformation
and code generation?

The probably most ambitious objective of an industrialized software development is
the automated creation of artefacts such as model transformations to more detailed
models or source code generation. Playing into organizational aspects as well, how
high is the effort to implement such a concept? Do we need separate tools for each
problem domain or can we reuse their foundation?

4.2.3. Integrative aspects

The following research questions are closely related to technological aspects, as they
discuss the interoperability of product domains between organizations.

6. How can we ensure compatibility between domain specific tools and assets
of different problem domains?

Assumed key question 3 has successfully been answered and the critical innovations
are implemented in clearly delimited problem domains, how can we ensure that we
still can combine a multiplicity of technologies in an integration product? Are
Domain Specific Languages compatible to each others or can we fit components of
problem domain A into the framework of problem domain B? Systems usually need
to be planned and designed in a holistic approach (at least on a coarse level).

7. Can industrialized systems integration be aligned along broadly accepted
standards in the field of systems integration?

As discussed in chapter 3, systems integration lacks standards and methodical
approaches and thus suffers from high heterogeneity. Is it reasonable to align the
industrialization concept on broadly accepted standards (if available) in order to
alleviate such problems in the future?

5. Summarization and Outlook

Systematic reuse of existing software artefacts hardly takes place and the majority of
goods is still produced from scratch. With increasing complexity and size of today’s

Chapter 3: Internet and Applications

107

IT systems, a generally accepted and industrialized production principle becomes
necessary.

Promising approaches, notably Model Driven Development, Component Based
Development, and Software Product Lines, are currently being developed and
implemented, as described in chapter 2. The proposal of Software Factories by
Greenfield & Short (Greenfield and Short, 2004) combines new and already existing
concepts into a holistic approach of software industrialization. However, as software
engineering takes place in a wide variety of application domains, we cannot be sure
whether the available industrialization models can be applied to every one of them.
One of these domains is systems integration in which IT-Systems are adapted and
interconnected to support new business processes or business requirements. To better
understand the particularities of this field, chapter 3 depicts its substantial
differences. Consequently, chapter 4 discusses the suitability of existing concepts
with reference to systems integration and identifies the following difficulties and
shortcomings:

• A high heterogeneity in the projects of a systems integrator prevents the
traditional implementation of software product lines, unless they are
exceptionally narrow.

• Diverse technologies in a product family prevent building up technical
expertise. Dedicated (technical) development teams per product line don’t
seem to be viable.

• The implementation efforts for setting up and maintaining the previously
described “critical innovations” in small software product lines may
consume potential savings.

• Organizational aspects and requirements of software industrialization in
systems integration are yet unknown, especially with respect to the
previously described difficulties and shortcomings.

• The lack of standardized frameworks and architectures in the field of
systems integration may prevent an industrialized collaboration between
enterprises, e.g. to form a software supply chain.

Section 4.2 subsequently identifies further areas of research and categorizes them
into organizational, technological and integrative aspects. The first category is
concerned with the future organizational structure of a systems integration
organization, in respect of clearly delimited problem domains. Technological aspects
cover the actual implementation of technical concepts, their suitability for particular
areas, and preconditions for an increased level of automation. The final category,
integrated aspects, deals with the compatibility of industrialized development
methods across problem domains.

The present paper outlines particularities and potential challenges of industrialized
systems integration, as well as further areas of research to get there. In order to
pursue a structured approach and as some research topics depend on the answers of
others, the author suggests the following redefined order and consequential structure
of the research project, based on the key questions (KQ) in section 4.2:

Proceedings of SEIN 2008

108

• KQ 1: Elaboration of an organizational structure for industrialized systems
integration with reference to the specialization in a heterogeneous
environment, as well as (anticipating KQ 4) the application of critical
innovations as depicted in section 4.

• KQ 3: Evaluation of the applicability of essential innovations as e.g.
component oriented or model driven development to delimited problem
domains of systems integration. This question should also bear cost and
return on investment in mind.

• KQ 6: Analyse the interoperability of assets derived from different problem
domains in order to support the fundamental concept of systems integration.

• KQ 2: Once the most fundamental concepts and questions are in place and
answered, develop measures and metrics representing the degree and
success of industrialization.

• KQ 5: With regard to the size of potential problem domains, identify the
preconditions and efforts incurred with automated model transformation and
code generation (if applicable).

• KQ 4: Identify problem domains with more sophisticated products and
development tools such as SAP or Siebel and evaluate the applicability of
software industrialization concepts in these particular areas.

• KQ 7: Provide an outlook on the interoperability of industrialized system
integrators with regard to generic standards and frameworks in the field of
systems integration.

The above depicted further research on major problems of industrialized systems
integration will be conducted in close collaboration with representatives of the
industry to obtain first hand experiences and validate the results of the latest research
in practice. The obtained results of the particular problems will be presented within
scientific papers and conference contributions, whereas the concluding dissertation
will draw a holistic picture of industrialized systems integration and demonstrates
methods and techniques to get there.

6. References

Beltran, J.C.F., Holzer, B., Kamann, T., Kloss, M., Mork, S.A., Niehues, B. and Thoms, K.
(2007), Modellgetriebene Softwareentwicklung, Frankfurt, entwickler.press.

Brockhaus-Enzyklopädie. (1989), Brockhaus-Enzyklopädie. 19 ed. Mannheim, F.A.
Brockhaus.

Brown, A.W. and Wallnau, K.C. (1996), Component-Based Software Engineering: Selected
Papers from the Software Engineering Institute, Los Alamitos, IEEE Computer Society Press.

Butschek, F. (2007), Industrialisierung, Ulm, Ebner & Spiegel.

Computer und Informationstechnologie. (2005), In Greulich, W. (Ed. Der Brockhaus. Leipzig,
Mannheim, F.A. Brockhaus GmbH.

Crnkovic, I., Hnich, B., Jonsson, T. and Kiziltan, Z. (2002), “Specification, Implementation,
and Deployment of Components”, Communications of the ACM, 45, 6.

Chapter 3: Internet and Applications

109

Czarnecki, K. (1999), “Generative Programming - principles and techniques of software
engineering based on automated configuration and fragment-based component models”,
Illmenau, Technische Universität Illmenau.

Dan, A., Johnson, R.D. and Carrato, T. (2008), “SOA Service Reuse by Design”,
International Conference on Software Engineering Leipzig, ACM.

Encyclopedia Britannica (1991), Encyclopedia Britannica. 15 ed. Chicago, Encyclopedia
britannica inc.

Engel, T. (2006), “Ein Beitrag zur unternehmensübergreifenden Integration von
Informationssystemen” Institut für Rechneranwendung in Planung und Konstruktion.
Karlsruhe, Universität Karlsruhe.

Gassner, C. (1996), “Konzeptionelle Integration heterogener Transaktionssysteme”, St.
Gallen, Universität St. Gallen.

Gorton, I. and Liu, A. (2004) “Architectures and Technologies for Enterprise Application
Integration”, International Conference on Software Engineering. Edinburgh, IEEE.

Greenfield, J. (2004a) “Problems and Innovations - Building Distributed Applications”,
Microsoft Architect Journal.

Greenfield, J. (2004b) “Scaling Up Software Development”, Microsoft Architect Journal.

Greenfield, J. and Short, K. (2003) “Software Factories - Assembling Applications with
Patterns, Models, Frameworks and Tools”, International Conference on Object-Oriented
Programming, Systems, Languages, and Applications. Anaheim, USA, ACM.

Greenfield, J. and Short, K. (2004) Software Factories - Assembling Applications with
Patterns, Models, Frameworks, and Tools, Indianapolis, John Wiley & Sons.

Haines, G., Carney, D. and Foreman, J. (1997) “Component Based Software Development /
COTS Integration”, Pittsburg, Carnegie Mellon University.

Hasselbring, W. (2000) “Information System Integration”, Communications of the ACM, 43,
7.

Heinrich, L., Heinzl, A. and Roithmayr, F. (2004) Wirtschaftsinformatiklexikon, 7 ed.
München, Wien, Oldenbourg.

Lee, J., Siau, K. and Hong, S. (2003) “Enterprise Integration with ERP and EAI”,
Communications of the ACM, 46, 7.

Lewandowski, S. M. (1998) “Framworks for Component-Based Client/Server Computing”,
ACM Computing Surveys, 30, 25.

Lexikon der Kommunikations- und Informationstechnik. (2001) In KLUßMANN, N. (Ed.
Lexikon der Kommunikations- und Informationstechnik. 3 ed. Heidelberg, Hüthig Verlag.

Longo, J. (2001) “The ABCs of Enterprise Application Integration”, EAI Journal, 3.

Pham, H.N., Mahmoud, Q.H., Ferworn, A. and Sadeghian, A. (2007) “Applying Model-
Driven Development to Pervasive System Engineering”, International Conference on
Software Engineering. Minneapolis, IEEE Computer Society.

Proceedings of SEIN 2008

110

Riem, R. (1997) “Integration von heterogenen Applikationen”, St. Gallen, Universität St.
Gallen.

Schmidt, D. C. (2006) “Model Driven Engineering”, IEEE Computer, 39, 7.

Schryen, G. (2001) Komponentenorientierte Softwareentwicklung in Softwareunternehmen:
Konzeption eines Vorgehensmodells zur Einführung und Etablierung, Wiesbaden, Deutscher
Universitäts-Verlag.

Software Engineering. (1968) in Naur, P. and Randell, B. (Eds.) NATO Software Engineering
Conference. Garmisch Partenkirchen, NATO Science Committee.

Stickel, E. (2001) “Informationsmanagement”, München, Wien, Oldenbourg.

Strüver, S.-C. (2006) “Standardisiertes EAI-Vorgehen am Beispiel des Investment Bankings”,
Berlin, GITO.

Sutherland, J. and Van Den Heuvel, J. (2002) “Enterprise Application Integration and
Complex Adaptive Systems”, Communications of the ACM, 45, 6.

Szyperski, C. (1998) Component Software: Beyond Object-Oriented Programming,
Massachussetts, Addison-Wesley.

Vogler, P. (2004) “Prozess- und Systemintegration - Evolutionäre Weiterentwicklung
bestehender Informationssysteme mit Hilfe von Enterprise Application Integration”,
Wiesbaden, Deutscher Universitäts-Verlag.

