Applications and Impacts

Quantitative and Qualitative Description of the Consumer
to Provider Relation in the Context of Utility Computing

Benjamin Heckmann!, Andrew D. Phippen?
In memoriam Giinter Turetschek

'h_da — University of Applied Sciences Darmstadt, Germany
2Centre for Security, Communications and Network Research
University of Plymouth, United Kingdom
benjamin.heckmann @ gmx.de

Abstract: Utility Computing service provision aims to control the service quality for a
wide range of consumers. To closely control the desired service quality in each phase
of the service operations lifecycle, it is essential to be able to describe the quantita-
tive and qualitative relation between consumer and provider. This work introduces
Usage Patterns as a description language for the planning of quantitative relations and
Provisioning Factors to control the qualitative relations during runtime.

1 Utility Computing

This work is focused on the modelling and simulation of service usage in the context of
Utility Computing (UC). The term utility thereby refers to the field of industry. Here a
public utility [Bril0] describes an enterprise that provides certain classes of services to a
wide range of consumers.

The name Utility Computing indicates the vision of IT-based services comparable to pub-
lic utilities. In this work Utility Computing is defined as a business model for service
providers offering IT-based services and charging service consumers per usage, according
to [Rap04]. From the provider’s IT perspective UC is about service provision that is able
to scale dynamically, according to real-time fluctuations in demand [BT06]. Addition-
ally, UC service provision offers its services equipped with the ability to charge service
consumption per use [Nee(02].

From a consumer’s perspective UC is related to “the reduction of IT-related operational
costs and complexity” [YdAY T06]. Both perspectives, provision and consumption, have
in common to target a better utilisation of generally underutilised IT resources [AARO2] on
both sides. In summary, UC implicitly claims an abstract description of how IT resource
utilisation, its total costs and service prices relate (see Figure 1).

Thereby Utility Computing does not refer to a specific IT service definition. From a busi-
ness perspective any IT service where, from an economical point of view, it makes sense
to charge it by its usage is addressed by UC, e.g. flight scheduling, webspace offers or

335

INC 2010

others. Therefore a more abstract service definition is the most suitable for UC: A ser-
vice represents a type of relationship-based interaction between a service provider and a
service consumer to achieve a certain solution objective [Zha07]. From a technical per-
spective there are several types of services that fit this definition, e.g. web services (SOAP,
RESTHful and others), HTTP web servers or virtual infrastructures (Xen, KVM and others).
Service types outside the UC scope are e.g. IT projects or hardware sales.

— gross price

X Consumer
Price Scales
4 user request level
<
S template level
s w
o8 &)
=9 Service
o=
v}
“ level (1) are incorporated
Instance leve based on approximated
Operational Costs future resource
consumption
S~ Provider

—_— resource consumption

LIANG
levels of service usage

Figure 1: Levels of service usage in the context of this work

2 Service Quality

Utility Computing strongly addresses the aspect of service quality. This is implied by the
vision of UC as a business model for IT service providers comparable to public utilities in
case of necessity, reliability, usability, utilisation, scalability and exclusivity [Rap04]. All
these attributes directly or indirectly address the quality of the service provision.

The definition about what quality criteria for a service offer are chosen and how they are
monitored is subject to a service level agreement (SLA)! between the service provider and
a service consumer. This work addresses SLA on the level of technical agreements of
service quality, not the functional level. Thereby fechnical means: all technically measur-
able requirements relevant for the attended service response properties beside functional
correctness. Functional correctness describes the accurate behaviour of a service on the
layer of business logic. For example, a service method invocation with accurate method
parameters, according to the specified parameter value ranges, must compute the accurate
result set consisting of the expected business data.

Ireferring to the context of ITIL

336

Applications and Impacts

In this work, response time is defined as the primary SLA criterion for the service con-
sumer’s perspective in the context of UC. Other possible primary SLA criteria, like con-
tinuity or security of service offers, are neglected. From the UC consumer perspective,
request response times must be independent of the overall provider load. This implies the
abdication of contracted resource reservations of any kind. Otherwise the targeted dynamic
scale and optimised resource utilisation cannot be addressed by the UC provider. Response
time is the outcome of the secondary SLA criteria on the service provider side, defined as
request processing complexity and overall request amount. These criteria are subject to
the individual SLA between provider and consumer. This definition differs from known
definitions of SLA, which use resource centric criteria and therefore do not recommend
for UC scenarios.

In addition to service quality criteria, according classes of observed criteria value ranges
and corresponding actions must be specified during contracting. For the criterion of re-
sponse time, aberrations could be classified as:

e Better — for service response times beyond the minimum specified acceptable period
of response time.

e Within acceptable range — for service response times between the minimum and the
maximum of specified acceptable periods of response time.

e Beyond unacceptable limit — for service response times beyond the maximum spec-
ified acceptable period of response time.

e Unprocessed requests — for technically and functionally accurate service requests
that never got processed by the service provider, e.g. for dropped requests due to
resource overload on the provider side.

Beside the definition of service quality criteria, the management of service quality is of
interest to the service provider. A classical approach to manage the quality of service
provision is the capacity management. Here the goal is to provide the necessary amount
of resources for a certain service quality level at any time. This paper additionally pro-
poses to manage the quality of service provision by managing the service usage. In this
work usage management contains the indirect consumption management affecting the con-
sumer side and the direct provision management on the provider side. Consumption man-
agement uses the provider’s abilities such as SLA or price scales to indirectly influence
the service consumer’s usage behaviour. Therefore it addresses the quantitative aspect of
the consumer-provider relation. For the qualitative aspect of the relation, provision man-
agement monitors, evaluates and directly controls service request routing and processing
resource utilisation.

337

INC 2010

3 Research Objectives

The overall context of this work focuses on specific aspects of the service operations lifecy-
cle (SOL) [HSPT09]? for service offers based on the business model of Utility Computing.
In the phase of service business planning this work refers to the corresponding service
properties and service usage profiles resulting from the previous UC definition. During
service development and the phase of service operations this work will focus on services
in the technical context of Service-oriented Computing (SOC) [Pap03] corresponding to
the paradigm of Cloud Computing as described by [BMQ™07].

In this context a description of the modifications necessary to transfer a standard service
operations lifecycle into a UC SOL is missing. This includes the demand for an explicit
definition of UC’s core relation between IT resource utilisation, its total costs and service
prices. Also specific attention must be given to the implications of complex UC usage
scenarios.

The unidentified implications of complex UC usage scenarios considerably compromise
the planning, development and operation of UC service offers. Under these conditions the
prediction of resource utilisation and dependent operational costs, calculation of subse-
quent price scales, and subsequent runtime gross price calculations will fail.

4 Research Approach

The overall work starts from the business perspective, as technical requirements depend
on the business requirements imposed. Therefore, a five step approach to find solutions
for the specified objectives is proposed:

—

. Describe the current state of service usage in the context of Utility Computing.

2. Elaborate a detailed definition for the relation between a service and its consumer.
3. Analyse the SOL of UC services.

4. Determine the implications of complex UC usage scenarios regarding SOL.

5. Deduct a corresponding strategy to handle the complexity.

This paper focuses on the elaboration of the quantitative and qualitative relation between
service consumers and providers in the context of UC service provision quality manage-
ment.

2SOL phases are defined as: business planning, development and operations

338

Applications and Impacts

5 Usage Patterns

To be able to describe the core relation of Utility Computing, the following is assumed:
UC implies a relation between IT resource utilisation, its total costs and service prices.
This relation basically can be described by the quantitative usage relation between con-
sumers and a service, enriched by metadata. All other variables are deducted from this
usage relation, like cost and price calculations. This work proposes Usage Patterns as a
description language for this quantitative usage relation.

For the IT architect’s work, “new data, which includes usage patterns, will be added to
the list of things to be considered” [MenO7]. But the term Usage Pattern is not clearly
defined in computer science. Some similar terms are used to describe traffic in computer
networks or load in enterprise data centres. But none of these terms is applicable in the
Utility Computing service provision context of this work.

As an entry point to service usage description the works of [LyCMOO06] are introduced.
Liang defines three perspectives of service usage and collects data on these levels as entry
points for his usage data mining on web services. These levels of service usage are:

e User request level — The user request level of service usage addresses the outer view
on composite services. This perspective focuses on how composite services are
used by the consumer. This level is not aware of the optional complexity of service
cascades or the diversity of providers within the cascade.

e Template level — The template level of service usage addresses the inner view on ser-
vice correlations. A service template is defined as a flow of services, the final output
of which can satisfy the consumer’s need. At this level service usage concentrates
on how services correlate.

e Instance level — The instance level of service usage addresses the constraints of the
service runtime environment of the service provider. These constraints restrict how
services are implemented and whether and how they can function.

Usage Patterns are concerned with the user request level and template level of Liang’s
definition of service usage, see Figure 1. Both of these perspectives describe relations
between services and their consumers.

A Usage Pattern defines the quantitative usage relation between an unlimited number of
service consumers and a particular service offered by a service provider. Thereby con-
sumers are grouped according to their usage behaviour. This behaviour is expressed by one
or more request classes, whereby the relation provides the request frequency as attribute
with equal distribution assumed. Each request class describes a certain usage behaviour
towards the function of a service.

This behaviour is described by an abstract function parameters class. Each class repre-
sents a characteristic combination of function parameter value ranges that imply a certain
function call behaviour. It is assumed that for most functions the resource demand for pro-
cessing a function call can be deducted from given parameter values. It is known that there
are functions where this assumption fails, e.g. a function to calculate the total amount of a

339

INC 2010

bank account given the account number. It is not possible to estimate the resource demand
of this calculation by evaluating the account number.

Also a request class may relate to any number of sub-request classes. For this recursive
relation a request frequency attribute is provided, with equal distribution assumed. It is
known that this ability to describe service cascades breaks the paradigm of service ab-
straction [Erl07]. Therefore this feature is optional.

The detailed relations which altogether instantiate a Usage Pattern are shown in Figure 2
using an entity relationship diagram [Che76].

. X (1,1) (1,%)
Service Function —_ —_— Service
((I,ﬂ

WSS <‘> ———<"Function Parameter Class ~>

_—

(1, %) (1,%)
— B Request Class

[0 N
& R

Consumer Group

i:‘F_requencyl:) Relationship Types
((1,1))
1: consists of
2: uses
Consumer 3: includes
4: corresponds to
5: offers

Figure 2: Usage Pattern as ER diagram

6 Service Operations Lifecycle Interaction

Imagine a service provider plans to offer a new web service [(W304] consistent to the busi-
ness model of Utility Computing. In the first phase of the SOL, business planning for this
service offer is conducted. In this example the executive expects three market segments in
which the service could successfully be offered. In each segment different consumer num-
bers and usage behaviour are expected, due to the analyses of typical consumers. Based
on these expectations a first simple Usage Pattern instance is derived.

Given this first pattern, IT architects and operations managers now jointly estimate the
resource consumption of the future service architecture. This estimation is incorporated
into the business planning by deducting the operational costs for the predicted resource
consumption. This gives the executive the chance to validate planed price scales at an early
stage. Beside the Usage Pattern instance representing the expected consumer behaviour,
the executive elaborates a worst and a best-case scenario. In addition to the estimation

340

Applications and Impacts

of the quantitative consumer behaviour, the executive specifies the service quality to be
offered in each market segment.

As a base for their estimations IT architects will need a suitable provisioning model. Both
will need a simulation of such a model to evaluate service quality and resource demand of
service cascades. Both items, the model and its simulation, are described in [HSPT09].

In the development phase of the SOL the IT architect details the given Usage Pattern
instances from the previous SOL phase. In this example it is estimated that the orchestra-
tion of another web service is reasonable. To accelerate the development reuse is chosen.
Based on this extended Usage Pattern instance, conducting a simulation of the planned
architecture helps the IT architect to validate previous resource demand estimations early.
Even more importantly: he can validate service quality early and continuously during de-
velopment.

After the new service is transferred to operations, the responsible manager needs to man-
age the service provision quality. Beside the indirect ability of consumption management,
a continuous capacity planning is essential. Based on the estimation of future usage be-
haviour, provided by the executive, capacity demand for all offered services is simulated,
respecting their interactions. This analysis is conducted as a worst-, standard- and best-
case scenario to enable the executive to decide about future investments. Again, these
quantitative conditions are described in Usage Patterns, thereby representing the base for
simulation runs. Beside this continuous capacity planning in the SOL phase of service op-
erations, service quality is guaranteed by provision management. Provision management
ensures service quality by managing the routing of service requests. To calculate a routing
decision, Provisioning Factors are used.

7 Provisioning Factors

The active management of service requests at runtime aims to gain direct control of the
processing resource utilisation by controlling the routing of service requests. Besides the
continuous monitoring of the utilisation of processing resources, the decision about the
route of a request is the core of future provision management. To calculate this deci-
sion, measurable criteria, that both express technical and economical aspects of the re-
quest processing, must be defined. In this work these technical and economical criteria are
called Provisioning Factors. These factors represent the qualitative aspect of the consumer-
provider relation.

Provisioning Factors are segmented into three main factors:

e Processing factor: The processing factor aims to calculate the costs for the pro-
cessing of a service request on provider-owned resources. These costs derive from
the fixed costs for service hosting, e.g. for server acquisition, housing and admin-
istrative personnel, and corresponding dynamic costs, e.g. for cooling and power.
The process to identify the individual combination of these fixed and dynamic costs
is not part of this work. Before the calculation of the processing factor, resource

341

INC 2010

availability for request processing must be ensured. If the resources are available,
the processing costs using the selected resources are calculated. This calculation in-
cludes all costs for sub-requests performed by the request. It is known that detailed
analyses of large service cascades in order to find the optimum costs or to calculate
the exact resource demand at runtime may fail in complex provisioning scenarios.
In this case this work suggests calculating approximations instead.

e Outsourcing factor: Beside the option to process requests on provider-owned re-
sources, scenarios are conceivable, where it can be an economical alternative to for-
ward requests to other service providers for processing. Such outsourcing decisions
can be appropriate for all layers of a service cascade. From processing customer
requests on competitor sites in times of peak loads up to the dynamic processor
picking for back-end services, such as the retrieval of geological information. The
outsourcing factor aims to calculate the costs for external request processing.

e Neglecting factor: Instead of the two previous factors the neglecting factor aims to
calculate the costs for an intentional violation of the SLA agreed with the consumer.
Thereby the violation may at worst consist of a request drop, but also in other aber-
rations form the given SLA. To achieve this flexibility, the costs for all contracted
variations of service level aberrations must be taken into account.

All three Provisioning Factors calculate costs. Combined with the consumer’s contracted
price list, the profit or loss of a request routing decision can be estimated. Note that all
mentioned costs may vary over time on individually contracted factors, such as the time
of day or discounts on request amounts. The introduced factors are only proposals used in
this work. It is possible to add or remove criteria as needed in other contexts.

8 First Outcomes

First outcomes can be shown analysing an example scenario. In this example the profit of
a service provider is analysed during peak demands, where significantly more resources
to process all incoming service requests are necessary than are available. The example
provider offers a single service to a certain range of consumers. The consumers can be
grouped into three SLA groups. Each SLA group differs in maximum request response
time, pricing and contractual penalty. It is assumed that in terms of request complexity,
request frequency and request number each consumer behaves equally. The number of
consumers in the highest and lowest SLA group is equal. The number of consumers in the
medium SLA group is double the size of one of the other groups. The metered values in
this scenario are the total number of requests and for each SLA group: number of request
responses, mean of response duration, request drops, SLA fails and profit.

Compared are two scenario alternatives: classical vs. UC provision management during
peak demands. In classical provision management resources are shared at a fixed ratio
at runtime. During peak demands, this constraint also applies to more flexible classical
resources sharing alternatives, where unused resources can be borrowed among other con-

342

Applications and Impacts

sumers. For UC provision management it is assumed that request routing is adapted at
runtime based on the Provisioning Factors introduced in this work.

The scenario is modelled as discrete-event model presenting a multi-tier IT architecture to
process service requests. The model is implemented using the [HSPT09] UC simulation
framework. Figure 3 shows the comparison between a classical and an UC simulation
run. Both runs represent a simulation period of 30 minutes with 40 requesting consumers
using random request invocations. Analysing the outcomes, the distribution and drop rates
of requests between each SLA group are even. But there are significant improvements in
means of response duration for the primary and secondary SLA group and in SLA fails for
the primary SLA group. These shifts directly lead to a significant higher profit in the UC
provision management scenario.

Classic uc
[1] Total number of requests 15.594 15.738
[2] Number of request responses
Total 13.683 88% of [1] % of (1] Earnings per request
SLA1 3.539 % of [2] 6 of [2] 0,25€
SLA2 6.963 f [2] % of [2] 0,05 €
SLA3 3.181| 23% of [2] of [2] 0,01€
[3] Mean of response duration
Total 9,05 sec 10,46 sec SLA classes
SLA1 9,05 sec 7,40 sec 10,00 secmax.
SLA2 9,05 sec 7,59 sec 15,00 sec max.
SLA3 9,05 sec 16,38 sec 30,00 sec max.
[4] Request drops
Total 1.911 2.034 13% of (1] Drop fine per request
SLA1 573 627| 31% of [4] 0,50 €
SLA2 1.129 1.166| 57% of [4] 0,02 €
SLA3 209 241 12% of [4] none
[5] Request response SLA fails
Total 1.729 1.216 % of 1] SLA fine per request
SLA1 981 480 39% of [5] 0,25€
SLA2 726 708| 58% of [5] 0,01€
SLA3 22 28 2% of [5] none
[6] Provider profit
Total 219,56 € 434,68 € 198% of classical [6
SLA1 -35,50 € 179,75 €
SLA2 225,56 € 226,25 €
SLA3 29,50 € 28,68 €

Figure 3: Analyses of a simulation run

9 Conclusions and Further Work

In this paper the quantitative and qualitative description of the consumer-to-provider re-
lation in the context of Utility Computing is analysed. Derived from the demands of
service quality management and the Utility Computing business model, Usage Patterns
are introduced to address the definition of the quantitative consumer-to-provider relation.
Usage Patterns are used to enrich the service operations lifecycle to enable the analyses
of the qualitative consumer-to-provider relation during strategic planning. To address the
qualitative consumer-to-provider relation at runtime, Provisioning Factors are introduced.
Building on these factors, requests can be prioritised to optimise provider profits. The

343

INC 2010

introduced example uses a Usage Pattern to define its demand scenario. The simulation
of the Usage Pattern shows that runtime request prioritisation raises profits, while higher
service levels benefit from shorter response times. Further research aims to verify the sim-
ulation results analysing a real world scenario. The main aspect here will be the calibration
of the simulation runs to reflect the current resource consumption of the simulated service

requests.

References

[AARO2] Artur Andrzejak, Martin Arlitt, and Jerry Rolia. Bounding the Resource Savings of
Utility Computing Models. 2002.

[BMQ+O7] Greg Boss, Padma Malladi, Dennis Quan, Linda Legregni, and Harold Hall. Cloud
Computing. IBM DeveloperWorks, October 2007.

[Bril0] Encyclopaedia Britannica. public utility. http://www.britannica.com, 2010.

[BTO06] Guy Bunker and Darren Thomson. Delivering Utility Computing: Business-driven IT
Optimization. John Wiley \& Sons, 2006.

[Che76] Peter Pin-Shan Chen. The entity-relationship model - toward a unified view of data.
ACM Trans. Database Syst., 1(1):9-36, 1976.

[Erl07] Thomas Erl. SOA Principles of Service Design (The Prentice Hall Service-Oriented
Computing Series from Thomas Erl). Prentice Hall PTR, 2007.

[HSPT09] Benjamin Heckmann, Ingo Stengel, Andy Phippen, and Guenter Turetschek. Ultility
Computing simulation. In ESM’2009 The 2009 European Simulation and Modelling
Conference, pages 175-180, Leicester, United Kingdom, October 2009. EUROSIS-
ETL

[LyCMOO06] Qianhui Liang, Jen yao Chung, Steven Miller, and Yang Ouyang. Service Pattern
Discovery of Web Service Mining in Web Service Registry-Repository. In 2006
IEEE International Conference on e-Business Engineering (ICEBE’06), pages 286—
293, Shanghai, China, 2006.

[Men07] Alfredo Mendoza. Utility Computing Technologies, Standards, and Strategies. Artech
House Inc, April 2007.

[Nee02] Dan Neel. The utility computing promise.
http://www.infoworld.com/d/networking/utility-computing-promise-807, April
2002.

[Pap03] M.P. Papazoglou. Service-oriented computing: concepts, characteristics and direc-
tions. In Proceedings of the 7th International Conference on Properties and Applica-
tions of Dielectric Materials (Cat. No.03CH37417), pages 3—12, Rome, Italy, 2003.

[Rap04] M. A. Rappa. The utility business model and the future of computing services. /BM
Syst. J., 43(1):32-42, 2004.

[(W304] World Wide Web Consortium (W3C). Web Services Architecture.
http://www.w3.org/TR/ws-arch/, February 2004.

[YdAYT06] Chee Shin Yeo, Marcos Dias de Assuncao, Jia Yu, Anthony Sulistio, Srikumar Venu-
gopal, Martin Placek, and Rajkumar Buyya. Utility Computing and Global Grids.
¢s/0605056, May 2006.

[ZhaO7] Liang-Jie Zhang. Services Computing: Core Enabling Technology of the Modern

344

Services Industry. Tsinghua University Press ;;Springer, Beijing ;Berlin ;;New York,
2007.

