
Advances in Networks, Computing and Communications 6

92

CentOS Linux 5.2 and Apache 2.2 vs. Microsoft
Windows Web Server 2008 and IIS 7.0 when Serving

Static and PHP Content

D.J.Moore and P.S.Dowland

Centre for Information Security and Network Research,
University of Plymouth, Plymouth, United Kingdom

e-mail: info@cscan.org

Abstract

This research paper intends to find out which operating system and web server is faster when
hosting static and PHP generated content. The results could potentially sway end users who
are not sure of which web server they would like to use with static and PHP content. The feud
between Microsoft Windows and Linux is very long standing and this paper will throw some
light to this specific area. Both servers were installed with the default settings and configured
with three web applications and benchmarked using a load generation tool to see which
provided a higher number of requests per second. Microsoft Windows served 1184 requests
per second for static content and an average of 8.5 requests per second for the PHP
applications. Linux performed far worse in the static test with only 789 requests per second,
but served an average of 10.6 requests per second for the PHP applications. Linux is better
able to process the PHP applications, but Microsoft Windows is better for serving static
content when the default configuration of both operating systems is used.

Keywords

Windows, Linux, Server Performance, PHP, IIS, Apache

1 Hardware

The server hardware is an entry-level HP ProLiant ML110 Generation 5 server. It
has a single Intel Xeon 3065 dual core processor running at 2.33 GHz, 4 GB of un-
buffered ECC memory, a 250 GB hard drive and gigabit Ethernet.

The client has two Intel Xeon E5462 quad core processors running at 2.8 GHz with 2
GB of fully buffered ECC RAM. Traffic generation is a very CPU, network and
memory demanding task. Therefore the load testing software will be running on the
most powerful machine available for the test.

The NetGear GS716T, an entry-level enterprise grade switch, forms the test network
between the client and the server. It has 16 gigabit Ethernet ports and has a
switching capacity of 32 Gb per second.

To monitor the server and network while testing takes place a monitoring node has
been added running the Wireshark network protocol analyser. This allows for
detailed monitoring of the traffic going over the network. It also allows the

Section 1 – Network Systems Engineering

93

verification of results generated by the testing software and to monitor any potential
network interference. Its primary function is to determine if the results gathered
from the client are accurate. If the two sets of results do not match then the results
are discarded and the tests rerun. This ensures that the results are accurate as
possible.

All the nodes were connected in a star topology using CAT5e gigabit Ethernet.

Figure 1 - Network Configuration

The monitor node sits on a mirrored port which forwards all of the data sent to/from
the server to the monitor node.

2 Software

Three different web applications were installed on each operating system. The first
was a basic static web page with a simple HTML document created in Notepad. It
had one image and a few paragraphs of text on the British scientist Charles Darwin.

The second was the WordPress 2.6 blogging software. WordPress is a dynamic
application that relies on PHP and MySQL to work.

The third was the MediaWiki 1.12.0 package. It also depends on PHP and MySQL.

The web applications WordPress and MediaWiki were installed according to their
installation manuals. After WordPress was installed two articles and two comments
were added to the WordPress blog. One comment each was added to the NASA
Phoenix Mars Lander and the Mars Reconnaissance Orbiter articles. MediaWiki was
configured with an article on the CERN Large Hadron Collider experiment and a
smaller article defining a hadron. Links to both pages were added to the home page.

When installing the applications there was constant effort to ensure that as many of
the defaults were kept as possible. The only modifications made were to configure

Advances in Networks, Computing and Communications 6

94

the applications to make them work in the server environment provided and to add
the content as previously described.

To generate the HTTP traffic to test how fast each server is Apache JMeter 2.3.2 was
installed on the client. It was configured with a test plan to test each of the three
applications in turn. Figure 2 shows the final test plan as created in Apache JMeter.

Figure 2 - Apache JMeter Test Plan

To achieve this, the “Total Test Plan” was configured to run the thread groups
consecutively so they would run one at a time instead of all together which is the
default operational mode. Each thread group defines the number of users who will
access the application. Each thread group was configured to start two users because
of the dual-core nature of the server. The scheduler in each thread group was
configured to start 30 seconds after the previous group and to run the test loop for 2
minutes.

During the 2 minute test loop each thread will attempt to access each page in series
as quickly as possible. This means that the total throughput of a thread is limited to
the slowest article giving a farer representation of the speed an application can
provide.

The static thread group accessed the static web site on the server. The WordPress
and MediaWiki threads are slightly different in that they access the home page
before continuing to one of the article pages. WordPress continues to the Mars

Section 1 – Network Systems Engineering

95

Reconnaissance Orbiter article with its single comment and MediaWiki continues to
the Large Hadron Collider article. Each time a page is requested its embedded
resources are also requested and downloaded. This is to mimic the behaviour of a
standard web browser. So when requesting the static page there are actually two
requests being made and responded to. One for the actual HTML document, and a
second for the image it links to.

The response assertions in the test plan above are to check that the content returned
by the server is what was expected. If any errors occur “View Results Tree” would
record the response from the server and will show why the response assertion failed.
At no point did an error occur during the test.

The “Aggregate Graph” records all the transactions that take place between the client
and the server. It is this item that collects the number of requests per second for each
application.

The final requests per second figure is obtained by adding the requests made per
second for both articles of a particular application as Apache JMeter will generate a
figure for both articles separately. Adding those together when there is more than
one article in the test (such as is the case with WordPress and MediaWiki) gives a
throughput in requests per second for the application as a whole.

It is important to note that one request represents all of the HTTP queries and
responses required to download the HTML and embedded data. For example, the
static web page and WordPress required two HTTP queries and responses to
complete a single request. The MediaWiki application requires seven HTTP queries
and responses to complete a single request.

When the tests were run on each operating system a data monitoring tool was
running. This could have potentially affected the results, but the impact of
monitoring was most likely equal between the two operating systems.

Both Microsoft Windows Web Server 2008 and CentOS 5.2 were installed using the
default settings where possible. CentOS was installed with Apache, PHP and
MySQL from the install disc. Microsoft Windows Web Server 2008 was setup using
the management console to allow for PHP scripts to be executed using the Internet
Server Application Programming Interface (ISAPI) module. The latest PHP and
MySQL Microsoft Windows installations were downloaded from their respective
web sites and were more recent than the versions installed on CentOS 5.2.

• PHP 5.1.2 on Linux – PHP 5.2.6 on Microsoft Windows
• MySQL 5.0.45 on Linux – MySQL 5.0.67 on Microsoft Windows

It is unlikely that these differences provided either Microsoft Windows or CentOS
with a significant advantage or disadvantage.

MySQL was installed on Microsoft Windows with the following settings:

Advances in Networks, Computing and Communications 6

96

• Configured as a server machine
• Medium memory usage
• Multifunctional database access
• Support for Multilingualism
• 200 concurrent connections
• Installed as a Microsoft Windows service

When the test was run every effort was made to ensure that at no point would the
database be unavailable for either operating system. The default settings on CentOS
Linux 5.2 were sufficient and the settings above worked well for Microsoft
Windows.

No updates or service packs were applied to either operating system to ensure the test
was fair.

3 Results

Web
Application

Requests per
Second (CentOS

Linux)

Requests per
Second (Microsoft

Windows)

Overall Result

Static 789 1184 50% faster than Linux

WordPress 15.5 12.3 20.6% slower than Linux

MediaWiki 5.6 4.6 17.9% slower than Linux

Table 1 - Linux vs. Microsoft Windows Requests per Second

There are some interesting differences in the results between the two operating
systems. Microsoft Windows does have an impressive advantage on static content.
This is probably due to the fact than a default Apache installation on CentOS Linux
5.2 has a lot of unnecessary modules loaded. When installing IIS 7 it only installs
the modules required. As such, IIS 7 has fewer modules and extensions to worry
about when dealing with HTTP requests.

Where Microsoft Windows is let down is with the performance of PHP. It is
possible that the Microsoft Windows version of the PHP module is not as efficient as
on Linux. To improve performance IIS 7 can also be configured to execute PHP
code with something known as FastCGI. When reconfigured for FastCGI the results
for the dynamic applications increase slightly to 13.5 for WordPress and 5.0 for
MediaWiki. There is a clear improvement, but it still does not approach the Linux
speeds

Things have changed a lot over the years and a report commissioned by Microsoft in
2003 claimed that Microsoft Windows Server 2003 RC2 was significantly faster than
Red Hat Linux. (VeriTest, 2003) Unlike the report these test results indicate that
Linux is faster than Microsoft Windows 2008 under these somewhat specific
circumstances and that the VeriTest report should not be taken too seriously.

Section 1 – Network Systems Engineering

97

Ultimately, these results should not sway people from one operating system to
another. There are far more concerns to operating system choice than raw speed
which need to be considered carefully.

4 References

VeriTest (2003) Microsoft Windows Server 2003 with Internet Information Services (IIS) 6.0
vs. Linux Competitive Web Server Performance Comparison, Available:
http://download.microsoft.com/download/0/7/1/0715a190-70f5-4b0d-8ced-
f9d1e046aa6a/webbench.pdf (Accessed 20/01/2008)

