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Abstract: In QoS-aware networks, such as DiffServ-enabled IP networks, UMTS,
or IEEE 802.11e, the QoS-aware applications that run over them can identify service
classes to their flows. The flows are then treated by the networks differently with
respect to their classes. In contrast, legacy applications are not aware of the concept of
QoS and do not specify any classes to their flows. Thus they cannot benefit from the
QoS-support provided by the networks.

To this end, this paper brings forth a new intelligent flow classification system
(FCS) that can automatically identify the service classes of legacy flows. The pro-
posed FCS employs a new flow-level characteristics or “features” allowing it to iden-
tify flows on-the-fly and no packet-level data are required. Equipped with a machine
learning technique, it is also adaptive and self-updatable. Moreover, the FCS is evalu-
ated using packet traces from a sizeable network. The results show that our FCS works
remarkably well with average accuracy of 99.66%.

1 Introduction

Recent network standards, such as Internet Protocol version 6 (IPv6), 802.11e Wireless
LAN, WiMAX, and UMTS, incorporate QoS management schemes into their specifica-
tions. The implemented schemes are based on “Differentiated Services (DiffServ)” archi-
tecture, under which an application in a network node can specify an appropriate service
class to its network connection or “flow”. The packets within the flows are then marked
with a “service class” indicating the flow’s type of service so that the network can treat
each of them appropriately.

Regardless of which QoS management scheme is employed, effective QoS management
within a network requires certain applications to specify the QoS requirement to their
flows. We call such applications “QoS-aware applications”. In contrast, the commonly
used applications at present are designed based on the best-effort scheme. These so-called
“legacy applications” are not aware of the concept of QoS and do not specify any classes to
their flows — hence they cannot receive the QoS-support provided by the network. There-
fore, a mechanism that can correctly assign the service classes to the flows is essential. The
class assignment process is called “flow classification” and the mechanism that carries out
the classification is called a “flow classification system (FCS)”.

In our previous works [AS07b, AS07a], a novel FCS that aimed to support QoS man-
agement is proposed. It uses features that concern only flow-level information that can
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be observed in the network layer, no packet-level data including packet payloads are re-
quired. It also uses a machine learning algorithm, which provides learning capability to
the FCS. As a result, our FCS can “learn” the characteristics of the flows from the known
applications and use the learned knowledge to classify flows from the unknown ones.

Nevertheless, the proposed FCS is aimed at the end-user’s legacy applications and is de-
signed to be used only in the user’s end-device. Therefore, the only a handful of flows
can be computed simultaneously and only a small number of network applications are
concerned. In this paper, we extend our previous works by investigating feasibility of de-
ploying the system in a large-scale network that contains a sizeable number of hosts and
applications. The results of our evaluations show that the system can effectively be used in
a large networks with average correctness of 99.66%. We also evaluate our method in term
of learning time. The evaluation result shows that different learning algorithms, although
providing similar prediction correctness, they vary greatly in term of computational time.

This paper is organised as follows. Section 2 discusses existing flow classification systems
and related works. Section 3 examines each component of a FCS as well as our proposed
service classes, features and learners. Section 4 describes our evaluation methodology,
benchmark test set, as well as reporting the experiment results. Finally, Section 5 con-
cludes the paper.

2 Related Works

Flow classification is a method to categorise a given flow to an appropriate class. It is
originated in the area of network security where attacks or unauthorised flows must be
detected [ZP00, ML05]. The network administrators also use the FCSs to distinguish
different types of flows for network management and provision [SSW04, MZ05, BTS06].
Recently, along with the need of QoS management, the flow classification has also been
employed to identify service classes of the legacy flows [RSSD04, AS07b, AS07a].

Traditionally, well-known Internet application protocols have specific transport port num-
bers registered to themselves by the Internet Assigned Numbers Authority (IANA). The
simplest approach to distinguish different kinds of the flows is thus to look at their trans-
port ports. This method, however, is proven to be unreliable as applications might not
communicate via registered ports or some application protocols are not registered to IANA
[RSSD04].

Another approach, called “signature-based” approach, searches through payloads of pack-
ets in a flow for specific contents or “signatures” that can be used to identify the appli-
cation whose the flow belongs to. This method is sometimes referred to as “deep packet
inspection” [ZP00, SSW04, MP05]. Although this approach usually yields very high clas-
sification accuracy, the signatures must be identified beforehand. In addition, searching
for signatures in packet payloads might raise privacy issues and might not work if the data
in the payload are encrypted [BTS06].

To attack those problems, the so-called “flow-behaviour-based” FCSs try to capture com-
mon characteristics or behaviours of the flows in the same classes without relying on spe-
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cific signatures in the packet payloads. Some of these FCSs are equipped with classifiers
that have been pre-programmed by an expert [ZP00, ML05]. Some are equipped with
machine learning algorithms allowing them to learn common characteristics of the flows
without human-intervention [EBR03, RSSD04, BTA 06, EMA 07]. Other approaches
such as [XZB05] take a different route and focus on classifying the hosts instead. After
the type of the host (e.g., a server, a client, or an attacker) is determined, all flows from
that host will be classified as the same class. While this approach is useful in a network
provision, it is rather ineffective for flow-level classification.

Our proposed method is different from the aforementioned approaches in that it does not
require huge dataset at classification time [XZB05, RSSD04]. Also, unlike all signature-
based approaches, no human-intervention is necessary. More importantly, as our approach
does not require flows to be bidirectional, it can classify both TCP and UDP flows, which
is not the case in [EBR03, BTA 06, EMA 07].

3 Flow Classification System

In this section, the components of a flow classification system will be discussed. We will
also see how our proposed system is unique and more generic than other works.

3.1 Flows and Their Characteristics

In our framework, a flow is defined as a sequence of packets with the same 5-tuple value.
After the flow is observed by the FCS, its features are extracted. In our implementation,
all features of a flow is stored together as a vector, called “feature vector”. After a flow is
abstracted into a feature vector, it will be classified by the “classifier”, which in general is a
set of rules that analyses the values in the feature vector and assigns the class accordingly.
Our FCS employs a machine learning algorithm, or “learner”, to automatically construct
and update existing classifier without human-intervention. This facility, thus, makes the
FCS adaptive and self-updatable. Two other important components of a FCS, the service
classes and features, will be discussed below. Formal definitions of all components of a
FCS are provided in [Ana08, Ana09].

3.2 Service Classes

The choice of service classes to be used in a FCS depends on the purpose of the system as
it specifies how the flows would be categorised. Since our FCS is developed to assist QoS
support, the set of service classes has to be able to capture the QoS requirements. Cur-
rently, there are few standardised service classes available, for example, G.1010, 23.107,
and RFC 4594. Still, they cannot be used in our scenario directly as they are designed
to identify how the packets should be treated (based primarily on delay-sensitivities) and
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not to group similar services together. We, thus, propose a set of service classes, which
is meant principally for flow classification systems, with each class being designed to be
general enough to cover all services with similar QoS requirements as follows.

Strict Conversational Class Real-time audio/video applications are symmetric applica-
tions, which are sensitive to delay and delay variation as well as require relatively
high data rates (e.g., VoIP, videoconference, and real-time online games).

Relaxed Conversational Class This class of applications is quite similar to the previous
class but requires less bandwidth, less delay variation sensitive and intolerable to
error. Example applications include telnet, remote desktop and instant messaging.

Streaming Class The streaming services serve streams of data, which include audio and
video streams. These services expect high data rate but are not sensitive to delay
or delay variation because the data can be buffered and do not need to be used in
real-time.

Interactive Class All server access applications fall into this class. The key characteristic
of the applications is request-and-response behaviour. This kind of service is asym-
metric and only requirement is error intolerance. The example applications are web
browsers and email clients.

Background Class In background traffic, the other side of the transmission does not ex-
pect the data within a certain period of time and the application will use network
resources as they are available, i.e., in best-effort manner. Examples such applica-
tions are SMTP, FTP and Server Message Block (SMB) protocols.

3.3 Real-Time Features

The streaming and interactive classes can in turn be distinguished from each other by data
volume and burstiness. Flow burstiness characterises how uniform the packet inter-arrival
time (IAT) of the flow is. Packet IATs of streaming flows, which transfer data in streams,
would be more stable than those of interactive flows, which have to wait for interaction
from the other sides of the transmissions. To capture such characteristic, we proposed a
feature called throughput difference, which captures the changes of the throughput along
the flow [AS07a]. Our previous experiments showed that the feature is highly discrimi-
native. Nevertheless, it is not suitable for real-time flow-capturing as it requires a certain
number of packets per calculation window to ensure the correct estimation of throughput.

Therefore, we propose here a new feature, called “packet-size difference”, which tries to
capture the differences of packet sizes throughout the flow. Like throughput difference, it
is aimed at capturing the changes of the flow characteristics over time. However, it can
be computed at any flow length that is greater than two. Precise definition of the feature,
denoted by , is given by:
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Features Description
protocol transport protocol of the flow
srcPort source port
dstPort destination port

connTime flow run time (in seconds)
dataVolume sum of the sizes of all packets in the flow

pktCount number of packets in the flow (flow length)
pktSizeAvg average packet size
pktSizeDiff sum of differences of packet sizes throughout the flow
pktSizeSD standard deviation of the sizes of packets in the flow

pktSizeRMS root mean square of the sizes of packets in the flow
dataTPUTAvg average data throughput (data rate)
pktTPUTAvg average packet throughput (packet rate)

iatAvg average packet inter-arrival time
iatSD standard deviation packet inter-arrival time

iatRMS root mean square packet inter-arrival time
iatVar ratio of the iatSD and iatAvg

Table 1: Descriptions of employed features.

where is the number of packets in a flow, denotes the -th packet and
denotes the size of the packet .

Table 3.3 summarises all features that are used in our approach. Our features, unlike, e.g.,
[ZP00] and [ML05], do not require any calibrations or fine-tuning by the experts. Features
that are not well-defined such as maximum or minimum throughput are also avoided. More
importantly, they are designed from ground-up to be able to operate on both TCP and UDP
flows, which is not the case in some FCSs [EBR03, BTA 06, EMA 07].

3.4 Learners

In machine learning literature, there exist a large number of learning algorithms (or “learn-
ers”) designed for different classification problems. As discussed in our previous work
[AS07a], “supervised” learners are suitable for flow classification scenario. This is be-
cause the set of classes is distinctively defined. In turn, our research is focused on eval-
uating several supervised learners including J4.8, which is an implementation variant of
the famous C4.5 decision tree algorithm [Qui93], PART [FW98] and RIPPER [Coh95]
rule generators, Naive Bayes [JL95], and -Nearest Neighbour ( -NN) [Aha97]. J4.8 first
examines all the features at each level of the tree and then determines which one is the
most discriminative in separating the classes at their respective levels. Rules generator
algorithms, on the other hand, consider each class individually and try to find rules that
cover as many data instances of that class as possible, while simultaneously excluding
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Class Number of flows Percentage
Strict Conversational 4,532 0.01

Relaxed Conversational 4,264,464 12.17
Streaming 8,863 0.03
Interactive 25,138,596 71.74

Bulk 5,609,562 16.01
Total identified flows 35,042,233

Table 2: Number of identified flows within each class in WIDE traces

the maximum number of instances from the other classes. Naive Bayes classifier, which
employs Bayes theorem, works by statistically classifying the flows based on background
knowledge. Lastly, -NN classifies a data instance based on its similarity (or distance)
between the new instance and other instances in the dataset.

4 Evaluation

To see how our new flow classification technique performs in real-world, we evaluate our
approach on a large dataset that is collected from a sizeable network. In the following, the
benchmark dataset, evaluation methodology and evaluation results will be discussed.

4.1 Dataset

In our evaluations, we use the traces obtained from the Widely Integrated Distributed En-
vironment (WIDE) traffic archive [Cho08], which contains partial packet payloads. The
advantage of payload-traces is that we can use a signature-based flow classification sys-
tem to precisely identify the flows service classes. This can be used as the ground truth
to evaluate our flow classification system. The traces from the WIDE project are captured
in March 2008 in both directions on a 150 Megabit per second Ethernet external link,
which connects WIDE backbone and its upstream. They contain the first 96 bytes of every
packet’s payload. The whole traces are captured in the course of 72 hours from March 18
- 20. For each day, we selected five two-hour traces from different time periods, namely,
0:00-02:00, 08:00-10:00, 12:00-14:00, 16:00-18:00, and 20:00-22:00. In total, we have 30
hours of packet records of real-world traffic, consisting of 138,898,361 flows.

Before we can evaluate the prediction performance of our FCS, we have to identify the
actual class of each flow in the packet traces. In doing so, we have developed a signature-
based flow classification system, which identifies the application whose a flow belong to
based on the signature in the flow payload. As a result, we are able to identify more than
35 million out of 138 million flows (see Table 2). At any rate, as shown in the table, the
class distributions are highly skewed. The number of flows in each class varies greatly,
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from only 4,532 instances in the Strict Conversational class to more than 25 million in the
Interactive class. Therefore, the flow instances are equally sampled into a smaller dataset
before the experiments are conducted.

We have randomly sampled 4,000 instances from each class, constituting a dataset of
20,000 instances. However, to avoid any biases, the sampling process is done 10 times.
This results in 10 datasets, each of which has 20,000 flow instances stratified with 4,000
instances per class. Note that the number of instances per class is set to 4,000 in this case
because it already covers almost all of the 4,532 instances in the strict conversational class.
After the randomisation, the flows are extracted into feature vectors, which will be later
used by the learner to analyse the relationships between the flows and their classes.

4.2 Evaluation Strategy

The evaluations are carried out in two main phases: accuracy and computational time. In
the accuracy phase, the each learning algorithm is evaluated using 10-fold cross-validation
(CV) method. In cross-validation, the data are divided into equal partitions or folds and
each fold is held out to be used as the test set while the rest are used as the training set.
A classifier is then induced from the training set and evaluated against the test set by a
learner. This process is repeated over and over every fold has been used as test set (i.e.,

iterations). The 10-fold CV method is repeated 10 times resulting in the total of 100
individual tests. In computational time phrase, we analyse the CPU time required by each
learner to learn the relationships. The experiments are conducted on WEKA [HFH 09],
an open source data mining platform on a 2.8 GHz Intel Core 2 Duo with 2 GB of RAM
using Mac OS X 10.5 as the operating system.

4.3 Classification Accuracy

The evaluation results are shown in Table 4.3. PART, RIPPER and J4.8 perform particu-
larly well with more than 99% average correctness compared to the 92.97% achieved by

-NN. Naive Bayes, on the other hand, has much lower average accuracy of just 42.08%.

Moving to per-class correctness, while other methods can classify flow instances of all
classes equally well, Naive Bayes performs poorly on all classes except Bulk as it classifies
most of the instances as Bulk. This might be because the employed features are correlated
and the feature-independence assumption of Naive Bayes does not hold in our domain.

4.4 Computational Time

We have also evaluated the learners in terms of computational time required to induce clas-
sifiers (i.e., learning time). In our observations, the classification times of all learners are
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Class J4.8 RIPPER PART Naive Bayes -NN
Strict Conversational 99.98 99.82 99.91 38.86 99.84

Relaxed Conversational 99.15 99.47 99.57 20.95 95.74
Streaming 98.76 99.21 99.36 41.29 92.33
Interactive 98.75 99.02 99.39 19.10 84.31

Bulk 99.97 99.94 99.97 99.39 91.73
Average 99.35 99.51 99.66 42.08 92.97

Table 3: Average and class-wise accuracies of the learners (in percentage).

extremely low and not significantly different. Thus, they are not considered here. Figure 1
shows the average learning time of each learner on each of the datasets. Naive Bayes out-
performs other methods with only half a second learning time followed by J4.8, PART, and
RIPPER respectively. This is because Naive Bayes performs only simple calculations to
establish the likelihood of feature values and classes. Conversely, RIPPER requires more
than 40 seconds to learn. This is due to the fact that it employs a slow grow-and-prune
technique to generate the rule set and, after the rule set is induced, each rule in the set has
to be revised again [WF05].

Considering the computational time alone, Naive Bayes would clearly be the preferred
choice, even though its prediction accuracies are still inadequate. In comparison the other
learners, J4.8 provides the best trade-off between accuracy and computational time.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

J4.8 RIPPER PART Naive Bayes

A
ve

ra
ge

 C
P

U
 T

im
e 

(s
ec

on
ds

)

Learner

Figure 1: Average CPU time taken to learn from WIDE dataset. -NN learning time is not included
as it is a lazy algorithm.
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5 Conclusion

In this paper, we have proposed a set of service classes, features, and machine learning
algorithms to construct an adaptive flow-classification system. Particularly, we have pro-
posed a new feature, , which is intended to capture the burstiness of flows.
Advantage of the proposed feature is that it can be computed and any given time. Feasi-
bility of using the feature in real-time classification scenario, where the classification has
to be done in a specific period of time, will be invested in our future works.

The excellent evaluation results of the WIDE dataset show that our adaptive classification
method is accurate, usable and versatile. Moreover, with its effective learning capability,
our FCS is adaptive and self-updatable. In addition, our approach can operate on any
transport protocols. The computational time evaluation also shows that learning can be
carried out in a very short period of time.
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