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Abstract 

Modern vehicles are connected with the Internet through a range of wireless cellular network 
technologies. This provides the basis for many novel applications and use-cases towards 
intelligent vehicles, offering enhanced vehicle safety, traffic management, and driver and 
passenger convenience capabilities. The connectivity further enables new distributed software 
architectures that can provide solutions to existing challenges in the field of automotive 
software engineering. This paper introduces the approach of an Automotive Service Delivery 
Platform, based on the Machine-to-Machine Communication Service Architecture. 
Experiences and findings are presented, gained by implementing core elements of the 
proposed architecture prototypically. This implementation makes apparent the range and 
capabilities of current Machine-to-Machine Service Architecture and describes remaining 
challenges to facilitate efficient distributed automotive services. 
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1. Introduction 

Driven by the recent progress of Consumer Electronics (CE) devices like 
smartphones and tablets, the customers’ demands for functionality, customisability, 
and connectivity of their In-Car Multimedia (ICM) system is continually growing. 
Besides, in the context of Intelligent Transportation Systems (ITS), governments, 
standards development organisations (SDO), and engineers have been spending lots 
of research to enhance the traffic safety and efficiency for many years. 

Connecting vehicles with the Internet is the foundation for these visions, and the 
number of cars, equipped with GPRS, UMTS, and LTE hardware, already increases. 
Although further advancements within wireless cellular network technologies, 
network protocols, and automotive embedded hardware are necessary, adequate 
automotive software (SW) architectures and platforms are the key to let vehicles 
become an integrated part of the Internet and to make them intelligent or smart. Use-
cases and applications of former non-automotive domains must be integrated and 
formed into a homogenous overall system (Bauer, 2010). But the automotive 
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industry, and e.g. the consumer electronics and communication industry have 
different performance or safety requirements, as well as lifespan and innovation 
cycles. For instance, vehicle models are usually produced seven to eight years and 
they have to be maintainable for at least 15 years after the purchase. In contrast, the 
lifecycle of hardware, e.g. CPUs, is less than five years (Broy et al., 2007). More 
frequently, and even during the production phase, OEMs may want to integrate new 
software features (e.g. of other vehicle series). This might already be influenced by 
the innovation cycle of CE-software, but the latter is even shorter (Shimizu, 2004). 
Many social network smartphone-applications, such as Facebook and Spotify, are 
updated within days to a few weeks. In contrast, the software of the vehicle is only 
updated during service in a garage. Although the general mechanisms do exist to 
perform Over-The-Air (OTA) updates, the current automotive software architectures 
are not adequate to implement this securely with respect to possible side-effects and 
compatibility (Pretschner et al. 2007). This is intensified by the huge number of 
possible variants of a vehicle, not only regarding HW and SW revisions, but also 
with respect to configuration possibilities for car equipment. The issues of today’s 
automotive SW engineering is also emphasised by this fact: While the functionality 
from one vehicle generation to the next in many sub-domains only differs by 10% 
due to enhancements and changes, more than 90% of the software is rewritten (Broy, 
2006). This is caused by low level, hardware specific code that is hard to change or 
port (Broy, 2006). Even though the software-related challenges can be largely 
solved, hardware limitations continue to exist. Due to the harsh environment of the 
automotive domain, with wide temperature and humidity ranges, and special 
requirements on shock resistance, specialised embedded hardware has to be used. 
They are usually less powerful, compared to CE, and usually more expensive. 
However, it can be assumed, that the implementation of new applications during 
lifetime into a “traditionally designed headunit”, where all functionality is truly 
installed, will be limited by hardware constraints – similar to todays’ CE, hardware 
upgrades or replacements must be taken into account. 

Facing these challenges, a new architecture paradigm, including a substantial 
proportion of automotive applications implemented outside the vehicle as services 
residing on OEM servers (Glaab et al., 2010) might be valuable and constitutes the 
basis for the presented architecture. It is introduced in Section 2 in more detail, 
concluded with the motivation of an Automotive Service Delivery Platform (ASDP). 
Section 3 discusses architecture fundamentals, if such ASDP should be realised 
based on the M2M Service Architecture. Finally, the applicability of M2M is 
evaluated within section 4 by discussing results and experiences, gained during 
prototypical implementation of core elements at the ICM lab. Section 5 briefly 
summarises the findings of the paper and provides an outlook on future work. 

2. Towards an Automotive Embedded Internet 

As indicated, offloading of automotive functionalities (“intelligence”) to servers is a 
promising approach for the next generation of automotive software architectures. 
Figure 1 shows the general architecture, and involved components/domains: The 
OEM headunit is the central component of the vehicle, functionally connecting the 
displays, sensors, actuators, etc. The headunit is connected via wireless cellular 
networks with an OEM server, located within the Internet domain (“Cloud”). This in 
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turn might connect to 3rd party servers. Accordingly, “the clash” of different 
domains, with quite heterogeneous requirements, lifecycles, etc., should occur at the 
OEM server, where it is anticipated that they can be mitigated more easily. 

This is expected to reduce the hardware requirements for the headunit. Furthermore 
customising and adding of new functions during the lifetime of the vehicle does not 
raise the hardware requirements of the headunit as much, as integrated approaches. 
But, not every automotive application is suitable to be transformed to a web service 
in the same way. Criteria are needed for profound decision whether functions should 
(still) be realised within the vehicle, or if it is advantageous to transfer them as a 
service on a web server (Glaab et al., 2011). In particular resulting requirements 
against the wireless access networks have to be considered, because they can be 
treated as the bottleneck of this approach. Finally, it has to be reflected that vehicles 
can transit areas with no coverage. Consequently the remaining functionality during 
connectivity-loss has to be well-considered. However, since many of the 
aforementioned future automotive functionalities need data connectivity anyway, it 
can be expected that the number of suitable applications for cloud-based realisation 
increase above average. 

 

Figure 1: General architecture of distributed automotive software platform 

Automotive software engineers need an end-to-end (E2E) solution, which extends 
their design space for the implementation of applications from the vehicle to the 
OEM server. We name this architecture an Automotive Service Delivery Platform 
(ASDP). According to our approach it should meet the following requirements: It 
shall offer appropriate open and standardised interfaces, and a modular design to 
enable re-use of common functions, following a Service-Oriented-Architecture 
(SOA). Resulting communication capabilities shall offer appropriate mechanisms for 
designing and controlling of data flows, and to prevent network-misalignments with 
respect to functional split and scalability. It shall offer capabilities for mediation and 
adaption of services. Since future vehicles, as part of an ASDP, will consume and 
also expose services, they should not only be treated as connected, but as an 
integrated part of the Internet towards an (automotive) Embedded Internet (Wu et al., 
2011).  

3. An Automotive Service Delivery Platform based on the M2M 
Service Architecture 

Machine-to-Machine Communication (M2M), also known as Machine-Type-
Communication (MTC), has been selected as the technology for realising an ASDP, 
while meeting the above listed requirements. There is no complete M2M architecture 
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defined at the moment, as the preferred route has been to define M2M as a collection 
of functionality blocks, developed by different research institutes, companies and 
SDOs in particular European Telecommunications Standards Institute (ETSI) (ETSI, 
2013a), 3rd Generation Partnership Project (3GPP) (3GPP, 2013) and Open Mobile 
Alliance (OMA) (OMA, 2013). The main standardisation activities have been 
bundled in oneM2M (oneM2M, 2013) for global harmonisation since July 2012. 

3.1. Functional Architecture 

The current ETSI M2M Service Architecture (ETSI, 2013b) specifies three types of 
components: M2M Device (D), M2M Gateway (G), and M2M Network (N). D and G 
are located inside the M2M Device (and Gateway) Domain and are connected by 
using wireless access networks to the Network Domain, where N is located. This 
allows hierarchical structures, where several D connect to one G and several G 
connect to one N, which emphasises the need for scalability in the context of 
millions of devices. With respect to an ASDP, the D is the vehicle and N is the OEM 
Server. A Gateway is currently not part of the considerations, as the vehicle has been 
decided to be M2M-compliant and it hence is able to connect directly to N. 

In contrast to the currently widespread silos of vertically integrated applications, 
which are caused by the strive for the ultimate “killer application” (Wu et al., 2011), 
M2M has been developed as an open, horizontal, and hence more universal, 
integration platform. Thus, the Service Capability Layer (SCL), including the Service 
Capabilities (SCs), has been introduced within every M2M component, in order to 
encapsulate functions that are to be shared by many M2M applications (xA), which 
thus should only contain the business logic. Currently 11 SCs are proposed (ETSI, 
2013b): Application Enablement (xAE), Generic communication (xGC), 
Reachability, Addressing, and Repository (xRAR), Communication Selection (xCS), 
Remote entity management (xREM), SECurity (xSEC), History and data retention 
(xHDR), Transaction management (xTM), Compensation broker (xCB), 
Interworking proxy (xIP), and Telco operator exposure (xTOE). The x is a 
placeholder for the component, in which SCL the SC is implemented. If the xAE, for 
example, is located on the D, it is called DAE, a xGC within the Network is called 
NGC, etc.  

ETSI has defined four reference points (interfaces): dIa (vertical between DSCL and 
DA), mIa (vertical between NSCL and NA), mId (horizontal between D and N), and 
mIm (horizontal between N and N). Figure 2 depicts the compounded functional 
architecture, instantiated according to our proposed M2M-based ASDP. 
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Figure 2: Compound functional Architecture of an M2M-based ASDP Resource 
Organisation and Management 

Intrinsic to the M2M Service Architecture are that the resource organisation and 
related management procedures are following the RESTful architectural style, as 
defined in Fielding (2000). This style is particularly suitable for M2M 
communications (Pautasso et al., 2008). 

A generic, hierarchical structured, Resource Tree is located inside each SCL for 
collaboration and exchange of applications, data, and SCs on the D, G, and N. It 
“describe[s] how the different resources relate to each other [, and it is introduced to] 
improve the overall system performance through the use of minimal structured data.” 
(Boswarthick et al., 2012, p.127). The subtree within Figure 3 indicates the general 
structure of the Resource Tree. Several resources, e.g. data containers recur on 
different levels of the Resource Tree, which is used to model their scope.  

The Resource Tree is mapped to Uniform Resource Identifiers (URIs) and 
manipulated via the RESTful reference points dIa, mIa, mId, and mIm by the four 
basic CRUD methods, the so-called “verbs”: CREATE, RETRIEVE, UPDATE, 
DELETE and might be extended through NOTIFY and EXECUTE (ETSI TS 102 690 
2013). These methods can be mapped to the RESTful application layer protocols, 
most likely HTTP (Hyper Text Transfer Protocol). Recently the Constraint 
Application Protocol (CoAP) was developed, which is especially designed for the 
RESTful communication of very limited electronics devices (Shelby et al., 2013; 
Bormann et al., 2012), but it might also be valuable for an ASDP. 

4. Evaluation and Discussion 

Core elements of an M2M-based ASDP have been prototypically implemented. To 
evaluate the capabilities of the current ETSI M2M Service Architecture and its 
applicability to an ASDP, as envisaged within our research, exemplary use-cases 
have been mapped according to the basic architecture presented above. Three of 
them are briefly presented below, but for the ease of understanding, the further 
evaluation and discussion is basically continued with the first use-case. 
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1. Floating Car Data (FCD) / Extended Floating Car Data (XFCD) 
FCD describes vehicles that are used as driving sensors, periodically reporting at 
least their current location together with the timestamp to the OEM server. The 
trigger for the reporting might be time-related, distance-related, or a combination of 
both. The OEM server aggregates and analyses the data from all vehicles. 
Appropriate traffic algorithms and models enable the detection of traffic jams and 
average travelling times, which in turn can be used for enhanced route guidance 
purposes. XFCD may transmit additional data to the OEM server, such as rain sensor 
values, light sensor and hazard lights status, outside temperature, or vehicle 
dynamics data gained from active driver assistance systems. This data enables 
advanced inference of traffic safety and efficiency on a specific route. For instance, 
icy roads, heavy rain, or emergency braking can be determined and propagated to 
other vehicles that are approaching the relevant area.  

2. Vehicle Maintenance 
Modern vehicles have variable service intervals, depending on their usage, which is 
monitored over time, to estimate when thresholds are exceeded and service is 
necessary. Besides, various sensors and check routines may detect individual 
component failures. These are currently only locally stored using a fault recorder and 
manually readout at the car service station. M2M should enable use-cases, where 
relevant data can be submitted to the OEM server periodically, or event-/failure-
/based. The gathered data may be subsequently used to initiate a separate business 
process of contacting the vehicle owner, discuss necessary service amounts, and 
arrange workshop dates, etc. Furthermore, it might be used for quality management 
and product improvements. 

3. Enhanced Navigation, Social Driving, Intelligent Vehicles 
Assuming the addition of an online navigation system, which calculates the routes on 
the OEM server, to the ASDP. In such a scenario, the server knows the destination, 
the route, and maybe even upcoming trips (through access to an online calendar). 
Additionally with XFCD and vehicle maintenance, the system also has information 
about the current tank level, remaining distance, and average economy. Based on 
these data, combined with statistical analysis of historical gas price data regarding 
cities, day, time, it can provide optimal suggestions for intermediate refuelling stops. 
The importance of such use-cases increases especially regarding electro mobility, 
where charging stops may require more comprehensive planning, with respect to 
minimised range, charging time, power plant capabilities etc.. Enhancing the 
calculation with these additional constraints requires only service advancements on 
the OEM server and no vehicular software updates, or considerable improved 
wireless access network capabilities. Equally, a car-pooling service can be added just 
by connecting it to the OEM server, since the necessary data (e.g. driving 
destination, route, and current position) is already available, because of a basic 
application like the navigation service. 

4.1. Evaluation 

The M2M Service Architecture in general facilitates the transparent transport of data 
between a D (vehicle) and an N (OEM server). DA and NA never exchange data 
directly, but via their local SCLs. With the “Announcement” and “Subscription” 
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mechanisms of the ETSI M2M Service Architecture it is possible to fully or 
selectively transfer data from D to N and vice versa through the Resource Tree, 
SC(L)s, and RESTful communication. As a result a somehow vehicle’ (“vehicle 
stub”) arises within the NSCL, and an OEM server’ (“OEM server stub”) within the 
DSCL. Therefore local applications (lA) can consume data out of their local SCL 
(lSCL), originally generated by a remote application (rA), which spans the design 
space for data exchange, distribution, storage, wireless access network requirements, 
and connectivity handling. 

Since vehicular sensor data is the foundation for many automotive-related 
applications, it should be made available to DAs and NAs within the ASDP. 
Accordingly, a DA “Vehicle Data Provider” has been introduced, to make location 
data (e.g. latitude, longitude, height, heading, speed) and sensor data (e.g. water 
temperature, oil temperature, service status, tank level, average economy) available 
in the local resource tree through tailored data containers such as XML. For this 
reason, the application may gets the vehicle data e.g. from an external source (such 
as a Controller Area Network fieldbus (CAN-bus)), and processes it accordingly. 
Besides, a NA “Floating Car Data” is introduced, to implement the FCD business 
logic. Figure 3 provides an architectural view of the resource structure and data flow. 

 

Figure 3: VehicleDataProvider-DA to FloatingCarData-NA Data-Flow Example 

It is assumed, that all bootstrap and registration procedures of DA, DSCL, NSCL, 
and NA are successfully completed. Further, it is assumed, that necessary 
subscriptions from NA to NSCL, and NSCL to DSCL, are successfully created. 
Accordingly, the basic steps of a VehicleDataProvider-DA to FloatingCarData-NA 
data-flow are: 

1. The VehicleDataProvider-DA reads the vehicle data (position) by use of its 
CAN-bus interface. 

2. The position data is added to the resource tree, using a CREATE call of an 
appropriate contentInstance: Position-1. 
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3. Because of the existing NSCL-DSCL subscription, a NOTIFY from the 
DSCL to the issuing NSCL resource is sent, which contains the actual 
representation of the contentInstances resource. 

4. Because of the existing NA-NSCL subscription, a NOTIFY from the NSCL 
to the issuing FloatingCarData-NA resource is sent, which contains the 
actual representation of the contentInstances resource. 

The FloatingCarData-NA can process the vehicle’s PositionData sample together 
with prior samples of this vehicle, and other samples of other vehicles, considering 
the respective positions and timestamps to fulfil the objectives of the FCD use-case. 

4.2. Discussion 

Modern vehicles produce several hundred megabyte of sensor data per second: For 
instance, location data, changes with 1-4 Hz, but frequency can go as high as 20 Hz 
in the case of speed, due to device capabilities, system design, or statutory 
provisions. Considering the presented use-cases, often only few, but maybe 
particular, data samples are needed. Accordingly, in theory, only few values must be 
transferred between D and N, what even enables some use-cases with respect to 
wireless cellular networks constraints and thousands of vehicles. But, in its current 
release, ETSI has been decided that the information, passed between M2M 
applications (e.g. DAs and NAs), is a black box – opaque – to the M2M platform 
(ETSI, 2013b). Currently, the contentInstance resource shall contain the attributes 
contentSize, creationTime, lastModifiedTime, and the content itself. The latter 
additionally can be described by the attribute contentType, according to MIME-Type 
definitions (Freed and Borenstein, 1996a; Freed and Borenstein, 1996b), where 
appropriate. But these attributes are only meta data and do not change that the actual 
content is not transparent to the M2M platform. Accordingly the filterCriteria 
resource, which indicates that e.g. the SUBSCRIPE/NOTIFY can be filtered in more 
detail, can only address meta data of the contentInstance. For example time-related 
criteria like ifModifiedSince, ifUnmodifiedSince, createdAfter, and createdBefore or 
content-size-related attributes like sizeFrom, sizeUntil can be used. Besides 
descriptive attributes like searchString are available (ETSI, 2013c). On one hand this 
seems to be a reasonable, central design decision to build a horizontal service 
platform and prevent building another vertical silo solution, and it might be sufficient 
and tolerable if e.g. only a very limited temperature sensor, providing one sample per 
minute, is connected. But on the other hand, this leaves tedious tasks ahead if a very 
complex device like a vehicle should be integrated, which offers a vast amount of 
complex data that might chance several times per second. Advantageous automotive 
data subscriptions/filterCriteria like 

 “Provide speed, current position, and timestamp of the car every 100 m” 
 “Send notification if water temperature is above 90 °C” 
 “Provide speed, position, outside-temperature, rain sensor value, timestamp 

in case of an ABS or ESP control intervention” 

are not feasible according to the current M2M release. Hence, to realise specific use-
cases, vehicle data filtering can/must already be performed within the M2M 
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application layer. Thus, as a workaround, data might be provided not common, but 
specific, e.g. within an appropriately filled data container FloatingCarData, on 
which the existing meta data filterCriteria are sufficient. Since it can be expected 
that the data acquisition rules are not fixed and may change often during runtime, 
depending on running applications, current driving region, traffic status, wireless 
access network utilisation, etc., extensions for dynamic configuration might be 
valueable. However, this again causes vertically integrated and isolated silo solutions 
on top of the common M2M Service Architecture. 

M2M Service Architecture specifies values like delayTolerance, and 
minimalTimeBetweenNotifications, which indicate that timing-constraints can be 
defined for notification and data transmission. This should facilitate some network 
optimisations with respect to the number of packets and the reduction of overhead in 
case of aggregation of several packets (Lo et al., 2013). In the context of complex 
M2M-devices, like vehicles, which potentially offer a vast amount of information, 
semantics support – data-awareness – for SUBSCRIPTION/NOTIFY below the M2M 
application layer, promises an important bandwidth-reduction, while retaining most 
flexibility. This could also facilitate data-mediation functions on D and N, which 
prevent the multiple transmission of the same information, caused by independent, 
disjoint applications. 

5. Conclusions 

Connectivity and appropriate distributed automotive software platforms are the 
foundation for future vehicles to facilitate an additional level of inference, prediction, 
and responsiveness, to be perceived as intelligence. Such intelligent vehicles will 
offer enhanced user experience and evolve the activities associated with driving 
towards an Intelligent Transportation System, with increased traffic safety and 
efficiency. To enable this vision, this paper proposes an M2M-based Automotive 
Service Delivery Platform, facilitating many automotive applications implemented 
headunit-external on OEM servers. The ETSI M2M Service Architecture has been 
selected, because it specifies a horizontal service platform, with common Service 
Capabilities, interfaces, and resource-based, RESTful, communication on Resource 
Trees and it has been designed to offer an end-to-end integration solution for many 
different domains, including automotive. We presented experiences, gained during 
prototypical implementation of core elements according to the current M2M release, 
and evaluated the capabilities on the basis of representative use-cases, in particular 
Extended Floating Car Data. We noticed that by now, the M2M layer only helps to 
unify communication with and management of devices, to achieve decoupling 
between applications and devices, and to handle heterogeneous access network 
technologies. But, as discussed, ETSI M2M Service Architecture is currently not 
very efficient for complex devices, offering many information at a high rate, like 
vehicles. In order to support this, enhancements that make data understandable 
(transparent) to the M2M platform are necessary and will be subject of further 
research. 
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