
Algorithm for Generating Peer-to-Peer Overlay
Graphs based on WebRTC Events

Christian von Harscher, Marco Schindler, Johannes Kinzig and Sergej Alekseev
Computer Science and Engineering

Frankfurt University of Applied Sciences

Frankfurt am Main, Germany

{harscher|mschindl|kinzig}@stud.fra-uas.de, alekseev@fb2.fra-uas.de

Abstract—The peer-to-peer paradigm is widely used in the
distribution of data and documents and direct multimedia
communications on the internet. The network nodes, which are
concerned in a peer-to-peer network, create an infrastructure
that provides and offers a desired functionality or application in
a distributed manner. Upcoming communication standards, such
as WebRTC, also enable a setup where web browsers can act as
peer-to-peer nodes.

In this paper we present an algorithm for generating connec-
tion graphs of the peers based on WebRTC state events. The
essential idea of the algorithm is to collect events, generated by
changing a signaling and connection state of peers. The algorithm
processes the collected events and generates a connection graph
of the peers, which represent the overlay topology of the peer-
to-peer application.

Additionally we present examples of collected events and
corresponding connection graphs.

Index Terms—WebRTC, Finite State Machine, Graph, Algo-
rithm

I. INTRODUCTION

Performance monitoring is an challenging aspect of system

and service development, it is helpful by detecting and diag-

nosing performance issues and assists in maintaining a high

availability. These days developing teams mainly take data-

driven decisions, and these performance measurements play a

major role in debugging.

WebRTC is a steadily evolving web communication stan-

dard, but it does not provide any interfaces or tools to monitor

peer-to-peer overlay structures.

A WebRTC application creates RTCPeerConnection objects

[3, sect. 4.3.3] to establish connections between peers. The

state of a RTCPeerConnection is represented by three fi-

nite state machines: signaling, gathering and connection state

machine [1]. Each peer generates an event by changing a

signaling, gathering and connection state.

By gathering and storing these events and data it is possible

to analyze WebRTC sessions. Since the evaluation of the

entire data is a painstaking effort, this article describes the

implementation of an algorithm that automatically evaluate

these data by generating expressive connection graphs. This

contains the representation of the events as a derived graph as

well as statistical data of each client. The algorithm is also able

to distinguish between the peer itself and the corresponding

connections established to other peers, see fig. 1.

Fig. 1. System Overview, see III-A for details

II. RELATED WORKS

Monitoring the performance of P2P based WebRTC appli-

cations is a major aspect in system and service environments.

Performance can be tracked, issues and non-stable connections

can be identified and the diagnosis of these failures help to

deliver a high quality of service and availability. Therefore

the first step is to gather the WebRTC statistics. Proprietary

and also open source frameworks exist for this purpose. One

proprietary framework is named callstats.io [8] which allows

the user to use the vendor’s databases to store the WebRTC

statistics. The statistics are then represented graphically show-

ing the data rates, network latencies, number of succeeded and

failed conferences. Additionally callstats.io allows the session

users to provide subjective feedback about the call’s quality.

One drawback is that callstats.io is not able to show a graph

giving information about the user’s connection topology.

One open source method gathering the statistics is presented

Proceedings of the Eleventh International Network Conference (INC 2016)

147

in [1]. Table I shows an extract of the database table for

gathering the WebRTC statistics as presented in [1]. These

statistics are important for measuring the general quality of a

session. By looking closely at the table it becomes obvious

that it is complicated to conclude the quality of a session just

from looking at this table. This leads to the basic necessity to

have a tool which is able to graphically interpret the gathered

data. An algorithm for exactly this purpose is described in this

paper.

There are libraries available that provide a way of generating

graphs in form of diagrams out of structured information

[4], [5] and [6]. This paper will not describe a new way of

generating graphs but use Graphviz.

III. PROPOSED APPROACH

Basically we are providing an approach for automatically

generating a graph structure out of the WebRTC statistics

described in [1]. The general aim is to get a structured

graph which can be displayed graphically to simplify the

forthcoming analysis. Additionally the proposed algorithm can

be used to transfer the graph into other data structures (e.g.

XML, JSON) for further automated processing.

The following sections describe in more detail the depen-

dency between the WebRTC events to generate the graph, as

well as the first steps necessary to implement the algorithm.

A. Terminology and Definition

The system overview is provided in fig. 1. It shows the

basic structure with three peers. The peer A is the session

initiator which is connected to the peers B and C. The

peer-id pid, connection-id cid, type t, local description ld
and remote description rd are given. A peer can hold more

than one RTCPeerConnection object. The type as well as

the corresponding connection-id are defining the direction

of a connection, shown as a line with an ending arrow to

the slave peer. A connection with type master is always a

outgoing connection, whereas a incoming connection is always

represented through type slave. Local and remote description

are extracted out of the Session Description Protocol (SDP)

[7], used for the initialization of the connection.

B. Events Gathering

The event collection is realized by the

WebRTCStateAnalyzer from [1]. This JavaScript library

is used by the WebRTC Application. The client-side code is

using the event listeners of the RTCPeerConnection to catch

the events. An event E is defined as follows:

E(ts, pid, cid, ld, rd, t, l, Zs) (1)

where ts is the timestamp and Zs the state of an event. The

timestamp is necessary to define the ordering of a queue of

events Q:

∀E ∈ Q : ts(En) < ts(En+1) (2)

The event listener l is needed for later analysis and is

describing which function of the RTCPeerConnection fired the

event. The state of the RTCPeerConnection object Zs is given

by Zs = (S,G,C) where S represents the signaling state

machine, G the gathering state machine and C the connection

state machine (fig. 4) of the RTCPeerConnection [1, Sec. III].
The actual acquisition of the events is done via a HTTP-

POST request from the peer to the application server. After

receiving the request the events are stored into a database. In

addition statistical data is sent on each event. This data can

be consolidated for displaying in the graph. This process and

further analysis of the statistical data is described in [2].

C. Algorithm for Generation Connection Graphs
The algorithm creates a directed graph based on gathered

raw events. The graph is defined as following:

G(N,T, r), r ∈ N (3)

where N are the nodes (peers), T are the transitions

(connections) and r is the root peer called session initiator.

Listing 1 shows the main part of the algorithm taking the

queue of events Q and returning the graph G as N , T , r (line

10). All events in Q are iterated and added to the node object

N . Each peer with its connections is added once in line 3. The

second iteration will then loop through all of the node objects

for extracting the connections and assigning the transitions.

These both algorithms can be found in listings 2 and 3. Last

steps to do are to extract all transitions into the transitions

object T and finding the root node r. The root node is the

node with no incoming transitions.

Listing 1
MAIN ALGORITHM FOR GENERATING THE GRAPH STRUCTURE

1 GENERATE_GRAPH(Q){
2 for(i = 0; i < sizeof(Q); i++){
3 N.add(Q[i].getPeer())
4 }
5 for(i = 0; i < sizeof(N); i++){
6 GET_CONNECTIONS(Q, &N[i]);
7 ASSIGN_TRANSITIONS(Q, &N[i]);
8 T = N.getAllTransitions()
9 r = N.getRootNode()

10 return N, T, r
11 }
12 }

Finding all connections of one node is done by the algorithm

in listing 2. For this reason all events in Q need to be iterated.

The connection id of the current event Q[i] and the given node

object n are compared. The connection type of n needs to be

non-slave. After fulfilling these criteria the connection id cid
can be added to the given node in line 5.

Listing 2
ALGORITHM FOR EXTRACTING THE CONNECTIONS

1 GET_CONNECTIONS(Q, *n){
2 for(i = 0; i < sizeof(Q); i++){
3 if(Q[i].getCid() == n.getCid()
4 && n.getType() != ’slave’){
5 n.addTransitionId(n.getCid())
6 }
7 }
8 }

Proceedings of the Eleventh International Network Conference (INC 2016)

148

TABLE I
DATABASE EXCERPT WITH WEBRTC RAW EVENTS (COLUMNS EXPLAINED IN III-A)

pid cid ld rd t ts l S G C
18 2364 7938 7768 master 1445330422 oniceconnectionstatechange stable complete connected
58 9854 7768 7938 slave 1445330422 oniceconnectionstatechange stable complete connected
18 3230 3629 7845 master 1445330424 oniceconnectionstatechange stable complete connected
67 3711 7845 3629 slave 1445330424 oniceconnectionstatechange stable complete connected
[...] [...] [...] [...] [...] [...] [...] [...] [...] [...]

The third part of the algorithm in listing 3 is the assignment

of the transitions between two peers. A connection is defined

by a connection id cid, a local description ld and a remote

description rd. The descriptions give the exact information

of which node is connected to which other node. The type

t is defining the direction of a transition. In this case only

the type master is considered so that the first parameter of

assignTransition() is representing the master and the second

parameter represents the slave side of the connection. The

transition is directed from the master to the slave node. Addi-

tionally the events are treated with descending timestamps,

see line 2. Last important thing to remark is that not all

events in Q are carrying the local and remote description.

To filter the events that are impractical for this use, the

constraints in lines 3-5 are defined. The event listener l must

be oniceconnectionstatechange, the signaling state machine

S ∈ Zs must be in the state stable and the connection state

machine C ∈ Zs must be in state connected. All other events

could carry either only one of the descriptions or none of them.

Once a transition is found it will be added to the node object in

line 9. The local description is always the other peer’s remote

description and vice versa.

Listing 3
ALGORITHM FOR ASSIGNING THE TRANSITIONS BETWEEN NODES

1 ASSIGN_TRANSITIONS(Q, *n){
2 for(i = sizeof(Q); i > 0; i--){
3 if(Q[i].getListener() == ’

↪→ oniceconnectionstatechange’
4 && Q[i].getSig() == ’stable’
5 && Q[i].getCon() == ’connected’
6 && n.getType() == ’master’
7 && Q[i].getLDesc() == n.getRDesc()
8 && transitionNotYetFound()){
9 n.assignTransition(n.getLDesc(), Q[i].

↪→ getLDesc())
10 }
11 }
12 }

D. Example

In this section the whole algorithm will be executed on basis

of the presented raw events in table I. These events will be

taken as input. The necessary filtering of the events by l, C and

S described in III-C is already done. This makes it obvious

that some of the events are missing in table I. A balanced tree

topology with three nodes is used for the example graph.

After the first loop in line 4 of listing 1 all nodes are

extracted:

{18, 58, 67} (4)

The next step is to extract all connections based on

the previously extracted nodes. To accomplish this the

GET CONNECTIONS() algorithm listing 2 is called. The

resulting connections can be represented as:

{(18, 2364), (18, 3230)} (5)

The first value represents the peer id pid and the

second value represents the connection id cid. Based

on these connections the transitions can be assigned by

ASSIGN TRANSITIONS (listing 3). This is the resulting struc-

ture containing the cid followed by the local description ld and

remote description rd:

{(2364, 7938, 7768), (3230, 3629, 7845)} (6)

Out of this structured data the graph G can be created:

G = ({18, 58, 67}, {(18, 58), (18, 67)}, 18) (7)

E. Graph Representation

Now that the necessary graph structure is created by the

algorithm it can be visualized in several ways. The fig. 2

represents a graph which is generated from the dot language in

listing 4. This generated graph shows a simple representation.

It is also possible to use labels for the node itself and its

transitions to generated a more complex graph, see fig. 5.

The labels include statistical information on the connections

between nodes as well as the location of the nodes. Even

further analysis can be done by converting the graph structure

to other formats like JSON or XML.

Listing 4
EXAMPLE GRAPH IN DOT LANGUAGE

1 digraph G {
2 18 -> 58
3 18 -> 67
4 }

F. Exception handling

For the analysis and exception handling it is important

to detect connecting and disconnecting peers. Fig. 3 shows

the joining and leaving peers based on the time. For the

forthcoming analysis the following interpretations can be done.

Fig. 3 shows a session example where four intervals were

identified.

Proceedings of the Eleventh International Network Conference (INC 2016)

149

Fig. 2. Example graph with no additional details

Fig. 3. Connections and disconnections based on time

Interval [a] begins with the opening of a session. Then

the number of peers is increasing, the peers join the session.

Interval [b] starts when the number of peers is decreasing for

the first time. The first peer has disconnected. The reason for

a disconnect can be caused by two incidents. Either the user

has left the session on purpose or the connection became

unstable and this lead to a disconnect. The second described

scenario is the most important one for the analysis because

it is necessary to distinguish between these two. When the

users leaves the session on purpose this must not be shown

as an error. When looking at Interval [c] it becomes obvious

that the number of peers is increases again. Some peers are

again joining the session. Interval [d] is the last identified

section. In a short amount of time, the number of clients is

decreasing until the number of peers equals zero. This means

that the session has ended and every user has left the session.

The connection state machine in fig. 4 is one out of three

finite state machines of the RTCPeerConnection. Combined

these FSM are representing the status Zs of a WebRTC

connection. With this information it is possible to determine

if the connection is successfully established, if there is no

signaling or if the connection failed.

IV. RESULTS

It is now possible to extract a expressive graph out of the

raw data collected in an WebRTC application. The output

�
�

�
�new �

�

�
�

�
�checking

� �

���

�

�
�

�
�connected �

�

�

��	

�
�

�
�completed

�

��	��
�

�
�failed �
��

�

�
�

�
�disconnected

� �

��
�

���

� �
�

�
�closed

Fig. 4. Connection state machine

graph also contains statistical network data of each connection,

determining the link quality. The choosen network statistics for

this graph are consisting of the round trip time (RTT) and the

send and lost packets between two peers. The algorithm also

provides a possibility to evaluate the quality of service through

checking of the state machines. There is a distinction between

three different states: no signaling, no connection and success.

An example graph, representing events and statistical data of

three clients and the consequential connections, is shown in

fig. 5.

Fig. 5. Example graph with details

V. CONCLUSION

This article describes an algorithm for generating overlay

graphs based on WebRTC state events.

This is a graphical solution to display the evaluation of

single WebRTC sessions. Essential information such as the

topology of a session or single connection states can be

determined by looking at the derived graph.

REFERENCES

[1] S. Alekseev, C. von Harscher and M. Schindler, Finite State
Machine based Flow Analysis for WebRTC Applications, Fourth
International Conference on Innovative Computing Technology
(IEEE INTECH), University of Bedfordshire, Luton, UK, 2014
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6927739

[2] S. Alekseev, J. Schaefer, A New Algorithm for Construction of a P2P
Multicast Hybrid Overlay Tree Based on Topological Distances, The
Seventh International Conference on Networks and Communications,
2015

Proceedings of the Eleventh International Network Conference (INC 2016)

150

[3] Adam Bergkvist, Daniel C. Burnett, Cullen Jennings, Anant Narayanan,
WebRTC 1.0: Real-time Communication Between Browsers, Working
Draft 10 February 2015 https://www.w3.org/TR/webrtc/

[4] AT&T, Graphviz - Graph Visualization Software http://www.graphviz.org/
[5] Mathieu Bastian, Eduardo Ramos Ibaez, Mathieu Jacomy, et al., Gephi -

The Open Graph Viz Platform https://gephi.org/
[6] Wolfram Research, Wolfram Mathematica

http://www.wolfram.com/mathematica/
[7] M. Handley, V. Jacobson, C. Perkins, SDP: Session Description Protocol

https://tools.ietf.org/html/rfc4566
[8] Nemu Dialogue Systems Oy, callstats.io, callstats.io monitors and man-

ages the performance of video calls in an WebRTC application., Helsinki,
Finland, 01.2016.

Proceedings of the Eleventh International Network Conference (INC 2016)

151

