
Evaluating Framework for Monitoring and
Analyzing WebRTC Peer-to-Peer Applications

Marco Schindler, Christian von Harscher, Johannes Kinzig, Sergej Alekseev
Computer Science and Engineering

Frankfurt University of Applied Sciences

Frankfurt am Main, Germany

{mschindl|harscher|kinzig}@stud.fra-uas.de, alekseev@fb2.fra-uas.de

Abstract—Web Real Time Communication (WebRTC) tech-
nology becomes more and more popular, because it enables
Communication between web browsers and mobile applications
without the need for plug-ins or other apps. This makes it
interesting for a wide range of use cases such as call center
or online webshop. Our expectation is, that in the near future a
lot of commercial and free applications based on this technology
will be developed.

This paper presents an environment for prototyping of p2p
WebRTC based applications, monitoring and analysis of their
behaviour. The basic idea of this environment is to provide a
possibility to visualize connection graphs containing connected
peers of a WebRTC session and to collect statistics for monitoring
and analysis.

Index Terms—peer-to-peer (P2P), Web Real Time Communi-
cation (WebRTC), Connection Graph, Monitoring

I. INTRODUCTION

Web Real-Time Communication (WebRTC) [1] is a new

standard and industry effort that extends the web browsing

model. It provides the ability of putting real-time communica-

tion capabilities such as audio, video and data communications

into web browsers without the need of installing additional

software or plug-ins. Undoubtedly, one of the most common

and frustrating issues of companies, who offer products that

make use of real time communication, are missing diagnostic

tools for testing and troubleshooting the WebRTC connectivity.

The WebRTC services are typically p2p applications and thus

the troubleshooting process is even more difficult.

In this paper we present a framework for prototyping of We-

bRTC based applications, monitoring the WebRTC connectiv-

ity by collecting the analysis of various statistics. Furthermore

the framework visualizes all gathered information including

the connection states, statistic and geographical location of

involved peers.

II. RELATED WORKS

Considerable prior work has been done on the subject of

WebRTC state analyzing in [2]. We are motivated by the

fact that this cited work described how to analyze WebRTC

connections by looking at therefor collected events. These

events are generated by a state change of a WebRTC peer

concerned in the connection process. The essential approach

of this cited work is rest upon finite-state machines in accor-

dance with the WebRTC specification. We are using this state

analyzing concept to monitor and evaluate WebRTC sessions.

Additionally we gather various statistics including the peer

topology.
It is important to mention that an API named getStat() for

getting WebRTC statistics exist. This API can be used within

JavaScript code to return several WebRTC statistics such as

round-trip-time, packets-send, packets-lost etc.
The API is used by several projects (on github, etc.)

which claim to be ”analyzing libraries” for WebRTC. These

libraries mostly lack the infrastructure component to collect

and maintain the statistics at a local place for error-handling

and analyzing. An example for such a library can be found

under https://github.com/muaz-khan/getStats.
There exist one more framework named ”callstats.io” which

offers the infrastructure to collect and analyze the statistics in

one single place but this is a proprietary framework. They offer

client libraries for integration in the application. The library

then takes care for transmitting the WebRTC statistics to the

callstats.io’s servers. Customers then can access their gathered

statistics through a web interface. (cf. [4])
In contrast to the already existing possibilities offers our so-

lution a complete framework (based on open source tools and

libraries) which can easily be installed on a linux server. The

framework does not only collect the statistics, it additionally

collects the WebRTC events generated by the clients.

III. SYSTEM OVERVIEW AND GENERAL STRUCTURE OF

THE PROPOSED FRAMEWORK

Figure 1 shows the overall system architecture of the

proposed framework. All software components are running

in a linux server environment. Nginx is used as a proxy to

the backend applications such as application and signaling

server. The application server includes a PHP and MySQL
installation to run the Moodle Platform (see section III-A)

and the WebRTC Monitor (see section VI). For the server

side implementation of P2P algorithms two signaling services

are provided, one for running the algorithms written in Java
and one for running the algorithms written in JavaScript (see

section III-C for further details).

A. Application Server
The basis for the evaluating and benchmarking framework is

the Moodle eLearning Platform [5]. The reason for implement-

ing the benchmarking framework partly as a Moodle Plugin is

Proceedings of the Eleventh International Network Conference (INC 2016)

171



Fig. 1. System Architecture

the easy administration of users and sessions. The evaluation

of the different P2P algorithms was done with real users all

over the world. Therefore it was necessary to have a simple

solution for adding and maintaining users and ”classrooms”.

The Moodle Plugin basically provides the client functional-

ity for the P2P algorithm framework and the WebRTC Monitor

application, which is responsible for displaying the collected

data and statistics.

Our framework provides several iunterfaces for implement-

ing P2P algorithms in Java and JavaScript.

B. WebRTC Signaling Server

WebRTC enables peer to peer communication between

browsers, but also needs a mechanism to coordinate communi-

cation. This process is known as signaling. Signaling methods

and protocols is not part of the WebRTC API [1] .

There are several commercial cloud messaging platforms

that provides an API for WebRTC signaling such as Pusher 1,

Kaazing 2, PubNub 3, and vLine 4. There are also several open

source solutions based on Socket.io [7] such as webRTC.io,

easyRTC and Signalmaster.

We decided to implement our own WebSocket based signal-

ing server running in node.js [6] rely on channels. A Channel

is a namespace which allows broadcasting messages to make

sure the signaling data is exchanged among relevant users.

C. P2P Algorithm Server - RSWebSocket

In our proposed solution, two different algorithm servers are

implemented, but both are based on the Web-socket principle.

1Pusher - https://pusher.com
2Kaazing - https://kaazing.com
3PubNub - https://www.pubnub.com
4vLine - https://vline.com

They differ in the programming language, the way how they

handle the communication and they accept different types of

incoming requests. One is implemented in Java and the other

one in JavaScript.

IV. SOFTWARE INTERFACES AND PROTOCOL DESCRIPTION

Fig. 2. Description

A. Signaling Server for Java based algorithms - RSWebSocket

For evaluating algorithms written in Java the RSWebSocket

has an interface called IP2PJoinAlgorithm which declares the

methods needed for implementing a P2P joining algorithm.

The interface can be seen in the following listing:

IP2PJoinAlgorithm.join
IP2PJoinAlgorithm.peerLeave
IP2PJoinAlgorithm.getSerachTreeGraph
IP2PJoinAlgorithm.getSearchTreeRoot
IP2PJoinAlgorithm.getP2pTreeGraph
IP2PJoinAlgorithm.getPeer

The join method takes two arguments, as first argument

an object of the typeTopologicalCooridante and as second

argument peerId of type int.
The peerId is the unique identifier for the user which should

be inserted in the topological tree structure. The Topological-
Coordinate is an object which consists of the following data

and types:

TopologicalCoordinate.continent
TopologicalCoordinate.country
TopologicalCoordinate.city
TopologicalCoordinate.ip1xxx
TopologicalCoordinate.ip12xx
TopologicalCoordinate.ip123x

The returned element by the join method is an object of the

type JoinPeerResult, which holds all the information necessary

for a peer to be attached to or included in the peer tree

structure. The JoinPeerResult object holds an ArrayList which

contains Reconnect objects.

Proceedings of the Eleventh International Network Conference (INC 2016)

172



The Reconnect object has two integer attributes, peerId and

reconnectId. In case a peer leaves the session or a new peer is

inserted between two peers, this reconnect list is transmitted

to the clients. The clients then do a reconnect and update

the tree structure because peers were added or removed from

the recent structure. Additionally JoinPeerResult contains an

integer object called parentJoinId, which holds the peerId

where the new peer should connect to.

The third method is named peerLeave, it takes the peerId
as an input argument and returns an object of the type

PeerLeaveResult. The peerId is the peer which is going to

be disconnected from the tree structure. This peer’s children

then need to be reconnected to the remaining peers. The

typePeerLeaveResult holds an array list with Reconnect ob-

jects (as described above).

The fourth method is called getSearchTreeGraph, it takes no

arguments and returns an object of the type SearchTreeGraph.

The SearchTreeGraph object represents the whole search tree

and implements several methods such as getAsDot which

allows to print the search tree in the dot language format.

The fifth method is named getSearchTreeRoot, it does not

take any arguments and returns an object of the type TVertex.

The TVertex class is used to represent the nodes in the search

tree.

The sixth method is called getP2pTreeGraph and returns

an object of the type P2PTreeGraph, it does not take any

arguments as input. The P2PTreeGraph class is used to

represent the P2P tree.

The last method is called getPeer and takes the peerId as

an input. The return type is an object of the PeerVertex class,

it represents a node in the P2P topology.

B. Message Protocol Description - Implementing custom sig-
naling server

When implementing a custom signaling server to work with

the framework, the described messages in this section should

be taken into account. Developing a custom signaling server

becomes important when trying to evaluate algorithms written

in another language than Java or JavaScript.

The signaling mainly takes place by exchanging messages

between the client (session initiator, included as demo.js into

the Moodle Plugin) and the signaling server. These messages

are based on the JSON data format. JSON is widely used and

can easily be processed by major programming languages and

frameworks.

Generally the application is using two different JSON

messages, one for each communication direction:

signaling server -> session initiator
signaling server <- session initiator

The important data fields for session initiator → signaling
server can be seen in this listing:

type: NewSession: [sessionid, algorithmID]
join: [peerid]
onLeave: [peerid]

When a new websocket connection is opened by the session

initiator the signaling server checks for the message type. In

case it is NewSession a new session is internally added to the

sessions map and the sessionid and algorithmID is taken from

the JSON message. The algorithmID is only important for

the testing architecture where you can chose between several

algorithm implementations.

In case the message type is join the peerid is taken from

the JSON message and the algorithm’s join method is called.

In case the message type is onLeave the peerid is taken from

the JSON message to disconnect this peer from the structure

and reconnecting the other peers which have been connect to

this peer.

The data fields used for communicating in the opposite

direction: signaling server → session initiator (demo.js) are

described in the following listing:

type: join_return:
[peerid, connectto, reconnectList]
LeaveResult: [peerid, reconnectList]
reconnectList[peerid, reconnectid]

When the session initiator requests a join the signaling server

answers with a join return which contains the peerid, con-
nectto and reconnectList. The peerid is the current peer,

connectto is the peerid which the current client should connect

to and the reconnectList contains the peers which need to

reconnect in case the new peer is attached in between two other

already connected peers. The reconnectList contains name

value pairs of peerID:reconnectID.

C. JavaScript client side implementation

The client side implementation for the algorithm evaluating

framework is part of the Moodle eLearning plugin (cf. section

III-A). It is a JavaScript class for interacting with one of

the signaling servers mentioned in section III-C. The class

is implemented with the shown methods in the listing below:

P2PAlgorithm.prototype.init
P2PAlgorithm.prototype.join
P2PAlgorithm.prototype.onLeave

With these methods a point of intersection between the

client and the algorithm is defined. Through this construction it

is possible to use distributed algorithms running in the browser

of each client as well as centralized algorithms running on

the server. The communication of these algorithms is done

over a WebSocket connection with a specific message format

(cf. IV-B).

The init method is initializing the algorithm instance. The

join method is called by clients entering the WebRTC session.

The join method communicates the client’s session-ID to the

session initiator. The session initiator is then requesting the

position for the new joining client from the signaling server.

The client is joined after the session initiator receives the

position information and extends the tree structure by the

client’s ID.

Proceedings of the Eleventh International Network Conference (INC 2016)

173



If a session is ending the onLeave method is called auto-

matically by the corresponding client. This happens even if the

browser window is closed by the user. The client is sending

the onLeave information to the session initiator. The session

initiator is then requesting the reconnection list from the server

by sending the client-ID. On response the reconnection list

is processed by the session initiator and the reconnect is

executed.

V. GATHERING EVENTS AND STATISTICS

For the analysis of the WebRTC sessions the WebRTC

states are gathered. The current system state of each WebRTC

connection is represented through the states of the three

following Finite State Machines. According to [2, section III]

these finite state automatons are the signaling state machine,

gathering state machine and connection state machine. For

persisting the systems’ state we are using a MySQL database

in combination with the WebRTC Analyzer mentioned in [2,

abstract].

A. Raw events

The so called raw events are the WebRTC events reflecting

the state of the connection. Not only the three states for

signaling, gathering and connection finite-state automatons are

displayed, but also the peer-id, the room-id of the virtual

classroom, the session-id, the user-id and the method which

fired the event. The given user-id is utilized for creating a link

to the corresponding Moodle user. An database excerpt with

sample events are displayed in table I.

B. WebRTC Statistics

The WebRTC traffic is transmitted over the best-effort IP

network, which is inherently vulnerable to network congestion.

Audio, video and data packets can be lost during transmission

and congestion also increases the network latency and the

delay of the transported packets. High packet loss and long

delays affect the quality of the WebRTC media stream.

A statistics API of the WebRTC standard provides fea-

tures to return peer connection stats. These statistics can

be used to guarantee the best possible quality of WebRTC

calls. The JavaScript library used in this environment, enables

performance monitoring features for audio and video calls in

WebRTC-based endpoints. By using this library, the following

statistics of a client can be gathered.

audio_video_out_RoundTripTime,
audio_video_out_packets_sent,
audio_video_out_bytes_sent,
audio_video_out_packets_lost,

audio_video_in_target_delay_ms,
audio_video_in_jitter,
audio_video_in_discarded_packets,
audio_video_in_packets_received,
audio_video_in_bytes_received

TABLE III
DATABASE EXCERPT WITH GEOLOCATION TRANSMITTED BY THE PEERS

UserID Longitude Latitude City Country IP
18 13.381347 52.5496360 Berlin DE 79.218.211.X
22 13.952636 51.1793429 Dresden DE 141.30.66.X
25 7.4047851 51,5565821 Dortmund DE 217.237.151.X
7 6.3500976 51,4813828 Essen DE 132.252.3.X
13 8.692041 50.1287105 Frankfurt am Main DE 194.95.82.X

Table II shows the statistics gathered for session 10. This

table shows an excerpt generated by the monitor (cf. VI) and

displays values necessary to analyze the session’s quality.

C. Geolocation

Additionally to the gathered events described section V-A

and V-B the geographical position of each peer is determined.

When a peer enters a session the browser requests the current

geographical location using the HTML5 geolocation service.

This geolocation service replies with the geographical coordi-

nates of the current location. The client then uses the Google

Maps Geolocation API to translate the retrieved coordinates

into city, and country. As soon as the client has received this

information, it stores them in the database.

Fig. 3. Screenshot of the WebRTC monitor showing its functions and
capabilities

VI. MONITOR

Our gathered WebRTC events can be evaluated with the We-

bRTC Monitor module inside of Moodle. The module must be

enabled for each Moodle course in which the virtual classroom

is used as an activity module. The monitor features a selection

dialog for each classroom. After selecting a classroom the

WebRTC sessions are displayed. These sessions are adjustable

in the settings of a classroom. The start and ende time as

well as the session-id are displayed in the session overview.

In addition to that information buttons for various actions are

displayed. These buttons provide links to the raw events, to

the map, to the location and bandwidth information and to the

browser based WebRTC statistics. A screenshot of the monitor

can be seen in figure 3.

VII. CONCLUSION

Since WebRTC does not provide a standardized opportunity

to monitor and evaluate sessions, this article describes a

framework, introducing a solution for the missing analyzing

Proceedings of the Eleventh International Network Conference (INC 2016)

174



TABLE I
DATABASE EXCERPT WITH WEBRTC RAW EVENTS GENERATED BY THE MONITOR

UserID PeerID RoomID Timestamp sid Eventhandler Signaling State Gathering State Connection State
18 1443149221164 587393171153963 61 1443149276 10 start stable new new
18 1443149221164 587393171153963 61 1443149276 10 onsignalingstatechange have-local-offer new new
7 1443149221678 318042188814992 61 1443149276 10 start stable new new
7 1443149221678 318042188814992 61 1443149277 10 onsignalingstatechange have-remote-offer new new

TABLE II
DATABASE EXCERPT WITH WEBRTC STATISTICS

course time stamp sid userid peer id video out rtt video out packets sent video out packets lost
2 1443149231696 10 7 1443149221678 318042188814992 -1 347 null
2 1443149232029 10 18 1443149221164 587393171153963 8 375 0
2 1443149241689 10 7 1443149221678 318042188814992 -1 875 null
2 1443149242048 10 18 1443149221164 587393171153963 1 953 0

option. This framework includes different possibilities to as-

sess past sessions (see section VI). There are still some slight

improvements of the monitor necessary, such as implementing

the option to show the peer graph of a particular session (VIII.

But all in all it is an operative framework to find errors and

problems in WebRTC applications.

Fig. 4. Sample graph for a WebRTC session; shows the tree structure and
peers

VIII. FUTURE WORK

The next steps for the project consist of defining algorithms

for automated event examination and graphical displaying.

As described in section VI the monitor is able to show the

gathered events (cf. V) as a table. Important information such

as the tree structure or the state of a peer can be determined

by looking at the events but for a fast and easy evaluation a

graphical solution would be helpful. At the current state of the

project, these graphs were generated manually by examining

the database relations. Results can bee seen in figure 4. The

graph shows the tree structure of the participating peers and

important information about the connection between the peers.

Therefore the next steps include defining an algorithm

which is able to draw a graph displaying the participants as

nodes and the connection direction as edges. Additionally the

statistics can be included in the graph such as showing the

round trip time for packets from one peer to another, showing

the video and audio packets send from one client to another

and showing the lost packets between the peers.

REFERENCES

[1] Adam Bergkvist, Daniel C. Burnett, Cullen Jennings, Anant Narayanan,
WebRTC 1.0: Real-time Communication Between Browsers, W3C Work-
ing Draft 10 February 2015 https://www.w3.org/TR/webrtc/

[2] S. Alekseev, C. von Harscher and M. Schindler, Finite State Machine
based Flow Analysis for WebRTC Aplications, Fourth International Con-
ference on Innovative Computing Technology (IEEE INTECH), Univer-
sity of Bedfordshire, Luton, UK, 2014

[3] S. Alekseev, J. Schfer, A New Algorithm for Construction of a P2P
Multicast Hybrid Overlay Tree Based on Topological Distances, The
Seventh International Conference on Networks and Communications,
2015

[4] Nemu Dialogue Systems Oy, callstats.io, callstats.io monitors and man-
ages the performance of video calls in an WebRTC application., Helsinki,
Finland, 01.2016.

[5] Martin Dougiamas and Moodle Community, Moodle free and open-source
software learning management system - Release 3.0, 16 November 2015
https://docs.moodle.org/dev/Moodle 3.0 release notes

[6] Node.js Foundation, Node.js, Version 5.5, 20. Januar 2016 https://nodejs.
org

[7] Guillermo Rauch, Socket.io, Version 1.3.6, 15 July, 2015 http://socket.io
Socket.IO is a JavaScript library for realtime web applications.

Proceedings of the Eleventh International Network Conference (INC 2016)

175


