Proceedings of the Eleventh International Network Conference (INC 2016)

Efficient Test Case Derivation from
Statecharts-Based Models

Patrick Wacht'®, Ulrich Trick!, Woldemar Fuhrmann?, and Bogdan Ghita?
'Research Group for Telecommunication Networks, Frankfurt University of Applied Sciences, Frankfurt, Germany
2Department of Computer Science, University of Applied Sciences Darmstadt, Darmstadt, Germany

3Centre for Security, Communications, and Network Research, Plymouth University, Plymouth, United Kingdom
wacht@e-technik.org, trick@e-technik.org, w.fuhrmann@fbi.h-da.de, bogdan.ghita@plymouth.ac.uk

Abstract—This paper presents important aspects of a novel
framework for the automated functional testing of value-added
telecommunication services. Besides the introduction of a new
approach to model the potential behaviour of a service by means
of the Statecharts notation, the paper describes an efficient test
case derivation algorithm.

Keywords—automated functional testing; test case generation;
test framework; value-added services

I. INTRODUCTION

The demand for advanced value-added services in the
telecommunication domain has increased enormously over the
last years. This fact is a major challenge especially for service
providers who have to provide a fast transition from concept to
market product and have to offer low prices for their products
to satisfy their customers. In order to face these challenges,
service providers have integrated Service Creation
Environments (SCE) to allow their developers to rapidly create
new and individual value-added services and bring them to
market. However, relying on the quality of the SCEs and the
skills of the developers to create value-added services is not
sufficient to provide the services in best quality. Therefore, a
novel test framework is required to enable consequent testing
of value-added services before the deployment and
provisioning. Then, service providers are able to assure their
customers of a proper execution of the delivered value-added
services and that they perform according to the specified
requirements.

In literature, most testing approaches and frameworks
follow a model-based strategy [1]. Here, a formal model of the
implementation to be tested is created from which subsequently
test cases are derived. Most popular models for the purpose of
model-based testing are based on Finite State Machines (FSM),
Extended Finite State Machines (EFSM) and sometimes
Statecharts. Unfortunately, the existing approaches such as [2]
and [3] often lack an efficient automated test case derivation
method. In fact, the approaches either lead to an enormous
amount of generated test cases because of the increasing
complexity of the underlying formal model, or the test case
derivation leads to infeasible path results. Here, the generated
test paths can never be evaluated because the described
behaviour never takes place. Finally, the approaches often lack
flexibility regarding the test case generation method. Although

different coverage criteria are offered, the structure of the
formal models usually contains static.

In this paper, we propose a new method for test case
derivation and generation based on a Statechart-based formal
model notation. The method is embedded within the
architecture of a novel framework for testing value-added
telecommunication services, the Test Creation Framework
(TCF). The Statecharts-based formal model in the approach is
automatically generated based on a semi-formal requirements
specification and is comprised of a number of reusable test
modules. The approach supports different coverage criteria and
considers the infeasible path issue.

The remainder of this paper is structured as follows: the
following section 2 introduces the architecture of the
mentioned TCF. Section 3 introduces the selected modelling
notation of the formal model and illustrates how the reusable
test modules are described. Afterwards, section 4 discusses the
method to derive abstract test cases from the Statecharts-based
models.

II. TEST CREATION FRAMEWORK ARCHITECTURE

This section provides an overview of the architecture of the
novel Test Creation Framework (TCF) for the testing of value-
added telecommunication services.

Fig. 1 illustrates the architecture components as well as the
workflow of the methodology starting with the test developer
who can access the Test Modules Environment (TME) and the
Test Framework User Terminal (TFUT).

The TME enables the test developer to create, modify or
erase so-called reusable test modules which are based on a
modelling notation (Statecharts) and describe typical service
characteristics such as sequences of multimedia protocols like
SIP (Session Initiation Protocol) or HTTP (Hypertext Transfer
Protocol). The test modules usually define a protocol-specific
behaviour of a certain use case, e.g. the sending of an instant
message by using SIP, and cover both standard behavior as
well as possible alternative behavior. The reusable test modules
are stored persistently in a specific database, the Test Modules
Repository (TMR). Furthermore, a reusable test module
generally contains test data templates which are stored
separately within the Test Data Pool (TDP). The databases are

127

Proceedings of the Eleventh International Network Conference (INC 2016)

separated because the existing test data templates can be used
for diverse reusable test modules.

Test Developer
[o]

m

Test Report
Test Framework User
— |
Terminal (TFUT)

% Service Test
Description
Test Configuration
Unit (TCU)

w
Automatic
Composition Engine
(ACE)

Test Data Pool o
(TOP) T

Behaviour
Models

i
i

i

!

!

i

I

i

I

I

| - 1

! Test Modules P
1 Environment

| _ (TME) Test Case
1 = Derivation Unit (TCDU)
i

!

|| TestModules

I

I

|

i

i

i

|

!

i

i
| Abstract Test
i E Suite
Repository L]

(TMR) Test Suite Generator (TSG)

‘ Test Code Generator (TCG) ‘ ‘ Test Suite Builder (TSB) }47

Test Execution Environment (TEE) }—

Fig. 1. Test Creation Framework architecture

Via the TFUT, the test developer can specify instances of a
novel sort of specification or rather service description
language which is named Service Test Description (STD).
Once defined by a test developer, the STD triggers a fully
automated process which results in the execution of generated
test cases against the considered value-added service. In
principle, the STD comprises elements of test specifications
and service specifications. Furthermore, it contains
architectural definitions describing the participating roles
involved in the consumption of a value-added service and their
relationships as well as dynamic behavioural definitions
specifying use-case related requirements. The specification of
the behavior is performed by means of an applied pi-calculus
approach [4]. The overall structure of the STD has already
been published in [5].

On the basis of an STD instance, the Automatic
Composition Engine generates Behaviour Models, complete
formal models based on Statecharts notation which describe the
desired possible behaviour of the specified value-added
service. The process includes the automated selection of
identified reusable test modules and their composition to more
complex models as well as the automated instantiation of test
data templates. As a result, the ACE generates one Behaviour
Model for each specified requirement within the STD instance.
This enables a direct mapping from specified requirements to
the formal model and automatically, a mapping from
requirements to test cases.

The Test Case Derivation Unit (TCDU) includes a test case
finder which uses an algorithm and follows selected coverage
criteria to enable the derivation of abstract test cases from the
Behaviour Models. Depending on the selected coverage criteria
and the selected reusable test modules, the amount of test cases
differs significantly. The output of the TCDU is an abstract test
suite which includes abstract test cases for each Behaviour
Model.

128

The Test Suite Generator (TSG) creates a valid and
executable test suite that can be imported into a TTCN-3
(Testing and Test Control Notation version 3) test execution
environment. To achieve this, the abstract test cases have to be
translated into TTCN-3 test cases by means of the Test Code
Generator. The Test Suite Builder will enhance the TTCN-3
code with specific test modules and includes also the
configuration of TTCN-3 codecs and adapters. Furthermore,
the Test Suite Builder includes the TTCN-3 compilations as
well as the Java compilation in order to generate an executable
test suite.

The final step of the framework’s underlying methodology
takes place within the Test Execution Environment (TEE).
Here, the generated executable test suite will be loaded and
subsequently executed against the System Under Test (SUT),
the value-added service. After all test cases have been
executed, a test report is generated which includes information
about successful and failed test cases.

This paper is mainly concerned with the TMR (see section
3) and the TCDU (see section 4).

III. MODELLING SERVICE BEHAVIOUR FOR THE PURPOSE OF
TESTING

To generate appropriate functional test cases, a formal
modelling notation needs to be selected that enables a
behavioural description of a value-added telecommunication
service.

A. Requirements on a modelling notation

The ETSI standard [1] lists the following general
requirements that have to be fulfilled by potential modelling
notations for model-based testing approaches:

e The notation shall be based
operational semantics.

on unambiguous

e The notation shall support diverse simple data types
such as boolean, integer and character strings.

e The notation shall support user-defined abstract data
types.

e The notation shall support basic control structures like
variables, assignments and conditional statements.

e The notation shall support advanced control constructs
such as loops.

Considering these general requirements, the ETSI standard
[1] discusses that modelling notations for the specification of
behaviour are limited to rule-based notations (such as EFSMs
and abstract state machines), process-oriented notations (such
as the Business Process Execution Language (BPEL)) and
Statecharts [6]. If the properties of value-added services are
taken into consideration, further specific requirements have to
be met by the modelling notation:

e The notation shall allow the definition of reusable test
modules.

Proceedings of the Eleventh International Network Conference (INC 2016)

e The notation shall enable the composition of reusable
test modules.

e The notation shall
concurrent behaviour.

support the description of

e The notation shall support temporal logic (e.g. timer
integration).

e The notation shall deliver a standardised formal
description.

Based on these stated requirements, Statecharts were
selected as modelling notation. First, Statecharts explicitly
support modularity through the defined concept of hierarchical
states. Within such a hierarchical state, the behaviour of
reusable test modules can be specified. Second, the syntax of
Statecharts is very similar to EFSM-based approaches. This
aspect allows to include new transitions between reusable test
modules and therefore enables compositions. Third, Statecharts
support concurrency through so-called concurrent hierarchical
states (so-called AND-states). Within such a concurrent
hierarchical state, it can be more than one state executing
simultaneously. This is a very important aspect for value-added
services as they are running within concurrent environments.
Fourth, the support for timers is provided as soon as a state is
reached within a Statecharts model. Finally, the fifth
requirement is met by Statecharts because of the existence of
the State Chart extensible Markup Language (SCXML) [7], a
formal language which has been defined as World Wide Web
Consortium (W3C) recommendation.

To sum up, the Statecharts modelling notation meets all the
stated specific requirements. Rule-based notations have not
been taken into consideration because they do not support
concurrency and they generally do not provide an existing
standardised formal description. Process-oriented notations
lack a concept for the composition of reusable test modules.

B. Principles of modelling potential service behaviour

As Statecharts have been selected as foundation for the
description, the principles of modelling potential service
behaviour have to be determined in the approach. The authors
suggest a novel concept of modelling behaviour with a formal
model which includes both system-specific and test-specific
artefacts. The concept has been derived from the transaction
user (TU) which is the fourth and topmost layer of the Session
Initiation Protocol (SIP) [8] structure. In the context of the SIP
protocol, the TU contains both User Agent Client (UAC) and
User Agent Server (UAS) core. According to [8], a “core
designates the functions specific to a particular type of SIP
entity”. Therefore, the TU is either able to send requests and
receive responses through UAC or receive requests and send
responses through UAS. In the context of this test modelling
approach, the TU is part of the SUT and it is enhanced by
further client-based and server-based cores. Although the TU
concept has been taken from the SIP standard, also cores of
other protocols that are dedicated to the Open Systems
Interconnection Model (OSI) application layer can be applied.
Having access to a set of client-based and server-based cores,
the TU can act as a mediator between available client and
server cores and is therefore able to control the service logic

without having any information about the internal information
of a value-added service. A generalised example of the TU
acting as mediator between a server core of a not specified
“Protocol A” and a client core of a not specified “Protocol B”
is illustrated in Fig. 2.

Protocol B
User
Equipment

Protocol A sut
User
Equipment

Protocol B
Client

Protocol A

Server l n I
T T T
| Request (Protocol A) | R |
|4P| equest

| | |
| Response |

! Response (Protocol A) '(—| Request

T
|
|
|
|
|
Request (Protocol B) |

Response (Protocol B) |

|

| |
| Response

I

Fig. 2. Transaction user as mediator between client and server cores

The scenario shows that the TU as part of the SUT is
informed about any incoming protocol message by the
specified cores. It is also able to initiate messages through the
cores. Based on this generic example, a Statecharts-based
model can be defined to describe the behaviour. Such a model
consists of states and transitions. Each transition can contain
events and actions. In fact, the events as well as actions in the
Statecharts notation are represented by protocol messages (both
requests and responses). Fig. 3 shows the Statecharts model
describing the behaviour illustrated in Fig. 2.

Request (A) /
Response (A)

Fig. 3. Example simple Statecharts model

The focus of interest regarding the notation are the
participating cores and the transactions they manage. An event
within the Statecharts notation means that a certain core, which
is part of the SUT, receives a message. If it is a server-based
core, the received message is always a request type (see Fig. 3,
message “Request (A)”). Otherwise, if it is a client-based core,
the received message is always a response type (see Fig. 3,
message “Response (B)”). So, an event in the Statecharts
notation always refers to an input the SUT has to process. In
contrast, the actions refer to the reactions of the SUT through
the corresponding cores (see Fig. 3, messages “Response (A)”
and “Request (B)”).

C. Reusable test modules

The recent example illustrated behaviour of generic
protocols. For the concrete OSI application layer protocol SIP,
two so-called reusable test modules have been derived for the
server core, SIP UAS non-INVITE and SIP UAS INVITE. For
the client core, there are also two, SIP UAC non-INVITE and
SIP UAC INVITE. The “INVITE”-specific reusable test
modules refer to transactions that include the initiation of a call
using the INVITE method of the SIP protocol. All other SIP

129

Proceedings of the Eleventh International Network Conference (INC 2016)

methods (such as BYE, CANCEL and MESSAGE) are
handled by the “non-INVITE” reusable test modules. In the
following Fig. 4, the SIP UAS non-INVITE reusable test
module is displayed as an example.

SIP UAS non-INVITE

-/ s_ResponseB1xx {a3}

r_Request -/ s_ResponseAlxx
Start te1y [Trving (a1} [Proceeding r_Request /
(i s_R Alxx
L—J L {e2/a4}

-/ s_Response2xx_6xx

{a2} -/ s_Response2xx_6xx
{a5}

4
r_Request /
s. 2XX_6XX

timer).timeout
Completed {eq} Terminated

{e3/a6} entry: timerJ.start

o /

Fig. 4. Statecharts model of SIP UAS non-INVITE reusable test module

The entry point into the reusable test module is the “Start”
state which contains a transition to the state “Trying” which
holds the event “r Request”. Here, the “r” prefix is an
abbreviation for “received” and refers to the SUT that actually
receives a message by this statement. Once in the “Trying”
state, there are two valid optional paths that can be taken, either
to the “Proceeding” state with the “s_ResponseA1xx” action or
to the “Completed” state with the “s Response2xx_6xx”
action. Both actions contain the prefix “s” for “send”, which
states that the SUT actually sends the message back to the
initiator of the “r Request” message. The alternative paths
describe the potential behaviour of the SUT (the value-added
service). It could happen that based on the “r Request”, the
SUT directly acknowledged with a “200 OK” response by
performing the action “s Response2xx 6xx”. Here, the range
of status codes from 200 until 699 can be selected by means of
the Service Test Description [5]. Alternatively, the SUT first
sends a provisional response “s ResponseAlxx” (status codes
from 100 until 199) and afterwards sends a
“s Response2xx_6xx”, which is also the action determined in
the transition that has “Proceeding” as source and “Completed”
as destination state. As soon as the “Completed” state is
reached, the “timer]” is started and its timeout is expected. The
reaching of the state “Terminated” after the timeout denotes the
end of the transaction. Besides the straight paths within the
behaviour description, there are also three self-transitions
defined that describe specific recurring behaviour that could
take place.

Based on the specified behaviour in the SIP UAS non-
INVITE reusable test module, test cases can be later on derived
by a specific test case derivation algorithm. In general, this
algorithm will be performed on the resulting behaviour models,
which are compositions of several reusable test modules.

IV. TEST CASE DERIVATION

The test case derivation from formal models is widely
discussed in literature (such as in [9], [10], and [11]).
Generally, so-called structural coverage criteria are applied for
transition-based models such as Statecharts.

130

A. Selection of a proper structural coverage criteria

Depending on the selected structural coverage criteria, a test
case generator automatically generates a set of test paths within
the model from an initial state to the end state. A selection of
possible structural coverage criteria has been specified in [12]
and is illustrated in the following Fig. 5.

All-Paths

All-k-Loops-Paths

All-Transition-
Pairs

’ CanlgUratlons ’ All-Transitions

All-States /

Fig. 5. Hierarchy of structural coverage criteria

All-Loop-Free-
Paths

’ All-Round-Trips

The diagram shows the strongest structural coverage
criterion at the top and weaker ones in a lower level. The arrow
between the criteria illustrates that every test suite satisfying
criterion ¢; (arrow source) subsumes another criterion ¢, (arrow
destination). The meaning of the diverse structural coverage
criteria is as described in [10] [12] [13]:

e All-States — Every defined state within a given model
is visited at least once.

e All-Transitions — Every transition of the model must be
traversed at least once.

o All-Transition-Pairs — Every pair of adjacent
transitions in the model must be traversed at least once.

o All-Configurations — A configuration is a set of
concurrently active states. This criterion requires that
all configurations of the model’s states are visited.

e All-Round-Trips — This criterion requires a test case for
each loop in the model and that it only has to iterate
once around the loop.

e All-k-Loops-Paths — Every path that contains at most
two repetitions of one configuration has to be traversed
at least once. This requires all the loop-free paths
within the model to be visited at least once and
additionally, all the paths that loop once.

e All-Loop-Free-Paths — Every path free of loops has to
be traversed at least once. A path is loop-free if it does
not contain any repetitions.

e All-Paths — This coverage is satisfied as soon as all
paths of the model are traversed at least once.

The selection of a proper structural coverage criteria
depends on the underlying formal model. If the model contains
many alternative branches and also loops, the All-Paths-based
criteria (such as All-Paths, All-k-Loops-Paths and All-Loop-
Free-Paths) lead to an infinite number of test paths. In fact, the
underlying models applied in this approach can contain quite a
lot of branches and self-transitions (see Fig. 4). The All-Paths-
based criteria cannot be applied here. Alternatively, the
structural coverage criterion All-Round-Trips can be satisfied

Proceedings of the Eleventh International Network Conference (INC 2016)

with a linear number of test cases. It has been selected as
coverage criterion because in comparison to standard structural
coverage criteria such as All-Transitions and All-States, it is
able to detect faults more thoroughly. Furthermore, it is
recommended in literature by [9], [13] and [14] for model-
based testing approaches.

B. Representation of test cases in proposed approach

Although a proper structural coverage criterion has been
selected, the properties of value-added telecommunication
services have to be taken into consideration. Of course, it
would be possible to apply the All-Round-Trip structural
coverage criterion on the Statechart-based notation, but most of
the derived abstract test cases will run results in an
inconclusive verdict as soon as they have been made
executable. This has to do with the fact that resulting from the
coverage criterion, linear test cases are derived consisting of a
linear sequence of events and actions. In principle, this aspect
is not well suited for testing of a value-added service that is
supposed to operate within a reactive environment. It might be
possible that a value-added service responds to a stimuli
triggered by the test execution environment in a valid but
unexpected way. To exemplify the issue, a standard Three-
Way-Handshake for the SIP protocol is considered [8]. The test
execution environment sends an INVITE request in order to
establish a session to a value-added service. The linear test
cases that this behaviour relies on first expects a provisional
message (e.g. “100 Trying”) from the SUT and afterwards a
successful “200 OK” response. Now the SUT, after having sent
the expected “100 Trying” message, sends another provisional
message (e.g. “180 Ringing”). Although this behaviour is
allowed as an option, the test system compares the incoming
“180 Ringing” with the expected “200 OK” message and will
come to the conclusion that the response does not match.
Accordingly, the test case will fail or will be evaluated as
inconclusive. The problem of this test case derivation strategy
is that the linear test cases do not describe multiple expected
output states. However, the concept of the applied Statecharts
notation, having the messages that the SUT expects as events
and the ones it potentially sends as actions, allows a different
representation of test cases than in the standard linear form. In
fact, a test case derived from a Statecharts-based model can
also be presented as a directed graph G = (V, E), where V' is a
set of vertices and £ is a set of edges and where each edge is a
pair of vertices. Especially in a directed graph, an edge is an
ordered pair of two vertices (u,v) with the edge pointing from u
to v. Contrary to linear representations of test cases, a graph is
able to determine branches. So, any given vertex v; eV can
theoretically have an infinite number of outgoing edges.
However, according to the test case representation, there is a
restriction defined. A vertex v; €/ can only have more than one
outgoing edge if it specifies an action and not an event. This
has to do with the fact that within the proposed approach,
events can be definitely predicted whereas actions cannot.

C. Exemplified test case derivation from Statecharts models

The principle of test case derivation will be exemplified by
means of the SIP UAC non-INVITE and the SIP UAS non-
INVITE reusable test modules. In the following Fig. 6, the SIP

UAC non-INVITE behavioural description is illustrated with a
special identification of the transitions (e.g. “{al}”).

SIP UAC non-INVITE

timerE.timeout / s_Request {e1/a2} timerE.timeout /s_Request {e4/a3}

entry: timerE.start

r_Responselxx

{es}

entry: timerE.start

r_Response2xx_6xx
{e3}

r_Response_2xx_6xx
{e6}
timerK.timeout
Completed) (er

entry: timerK.start —

J

Fig. 6. Statecharts model of SIP UAC non-INVITE reusable test module

In principle, the All-Round-Trips algorithm includes the
All-Transitions algorithm without loops and adds one further
test case for each occurring loop within the model. Based on
the behavioural description, the following five test cases can be
derived (see Fig. 7).

s | (Dt (-et/orr(G—es>(D—er(10)
rea | (et s(@r—ern(P-et/ar(—e>(D—er>(70)

Fig. 7. Test case derivation from SIP UAC non-INVITE

The state names within Fig. 6 have been abbreviated in Fig.
7 (“Start” to “S”, “Trying” to Tr”, “Proceeding” to “P”,
“Completed” to “C” and “Terminated” to “Te). “TC1” and
“TC2” in Fig. 7 are based on the All-Transitions criteria
without loops. Both test cases describe a standard behaviour of
a SIP request being sent from the SUT to the participating
entities. The other three test cases “TC3”, “TC4” and “TC5”
refer back to the three loops or rather self-transitions that are
part of the behavioural description of the SIP UAC non-
INVITE reusable test module. As it is a client core-based
reusable test module, the SUT acts as a trigger by sending the
initial request. The test execution environment will react based
on the request and will send the appropriate responses the SUT
has to deal with. The perspective changes if a server core-based
reusable test module is applied. Then, the graph-based test case
descriptions with branches become relevant. In the following
Fig. 8, the test case derivation algorithm is applied to the SIP
UAS non-INVITE reusable test module (see Fig. 4) which
leads to three test cases.

All three test cases start the same way describing an event
“e1” received by the SUT. Afterwards, the SUT can act in two
different ways either by first sending a provisional response
(action “al”) or a terminating response (action “a2”). This
branch illustrates why a graph-based test description is

131

Proceedings of the Eleventh International Network Conference (INC 2016)

required. It cannot be predicted whether the SUT responds with
“al” or “a2”, but it is obvious that both responses represent
valid behaviour. A further action “a3” describes a provisional
response which can be retransmitted a not specified number of
times. Therefore, a self-loop is included in all three test cases.

a3,
TC1 oﬁy@\”‘f
Do A Det(®

Qez/uz»@\
O O e Ca®

a3,

FoN
@ﬂ»@?o—az—»@emys@m

Fig. 8. Test case derivation from SIP UAS non-INVITE

TC2

TC3

To sum up, the proposed approach enables an efficient test
derivation method by applying the All-Round-Trip structural
coverage criteria. It offers significantly better coverage than the
weaker standard coverage criteria All-Transitions and All-
States without the disadvantage of generating an infinite
number of test cases. Furthermore, because of the introduced
graph-based test case structure, there are no possible infeasible
path results. Even if some paths within a test case are not
reached, the execution can still be evaluated as “pass”.
However, this is only valid if optional paths are included.
Finally, the proposed approach also supports further flexibility
regarding the structure of the reusable test modules.
Theoretically, it is possible to manipulate the Statecharts-based
models describing recurring behaviour. An example would be
to erase the “Proceeding” state of the SIP UAC non-INVITE
and the SIP UAS non-INVITE reusable test modules. Then, the
provisional messages are not considered anymore. For certain
behaviour this can be a useful feature (such as in instant
messaging, where provisional messages are not used).

V. CONCLUSION

In this paper, we have introduced parts of a novel
framework for the automated functional testing of value-added
telecommunication services. As the approach includes a model-
based testing process, the requirements on an appropriate
modelling notation have been stated and the Statecharts
notation has been selected after evaluation. Furthermore, we
developed a new principle of modelling behaviour with
Statecharts. Through their server and client cores, recurring
behaviour of application layer protocols can be specified for

132

further usage. Finally, an efficient way to derive abstract test
cases from the models has been demonstrated.

Further papers to be published will focus on the missing
aspects of the proposed TCF, such as the relevance of the
Service Test Description within the process as well as the
transformation of the derived abstract test cases into executable
TTCN-3 test cases.

REFERENCES

[1] ES 202 951: “Methods for Testing and Specification (MTS); Model-
Based Testing (MBT); Requirements for Modelling Notations”, ETSI
Standard, 2011.

[2] P. Wacht, T. Eichelmann, A. Lehmann, and U. Trick, “A new Approach
to design graphically functional Tests for Communication Services”,
Proc. 4™ IEEE International Conference on New Technologies, Mobility
and Security (NTMS 2011), IEEE press, Feb. 2011, pp. 1-5,
doi:10.1109/NTMS.2011.5721068.

[3]1 J. Ernits, A. Kull, K. Raiend, and J. Vain, “Generating TTCN-3 Test
Cases from EFSM Models of Reactive Software using Model
Checking”, Proc. 36" Jahrestagung der Gesellschaft fiir Informatik e.V.
(INFORMATIK 2006), GI, Oct. 2006, Vol. 94, pp. 241-248.

[4] R. Milner, J. Parrow, and D. Walker, “A calculus for mobile processes”,
Information and Computation, Elsevier, 1992, Vol. 100, Issue 1, pp.1-
40.

[5] P. Wacht, U. Trick, W. Fuhrmann, and B. Ghita, “A new Service
Description for Communication Services as Basis for automated
functional Testing", Proc. 2" IEEE International Conference on Future
Generation Communication Technology (FGCT 2013), IEEE press, Dec.
2013, pp. 59-64, doi:10.1109/FGCT.2013.6767211.

[6] D. Harel and M. Politi, “Modeling Reactive Systems with Statecharts:
The Statemate Approach (Software Development)”, McGraw-Hill Inc.,
1998, New York, USA, ISBN: 978-0-070-26205-8.

[71 WB3C, “State Chart XML (SCXML): State Machine Notation for Control
Abstraction”, W3C Recommendation, 2015.

[8] IETF RFC 3261: “SIP: Session Initiation Protocol”, Request For
Comments, IETF, 2002.

[91 M. Utting and B. Legeard, “Practical Model-Based Testing: A Tools
Approach”, Morgan Kaufmann Publishers Inc., 2007, San Francisco,
USA, ISBN: 978-0-1237-2501-1.

[10] P. Ammann and J. Offutt, “Introduction to Software Testing”,
Cambridge University Press, Cambridge, 2008, UK, ISBN: 978-0.521-
88038-1.

L.H. Tahat, B. Vaysburg, B. Korel, and A.J. Bader, “Requirement-based
automated black-box test generation®, Proc. 25" Annual International
Computer Software and Applications Conference (COMPSAC 2001),
IEEE press, Oct. 2001, pp. 489-495,
doi:10.1109/CMPSAC.2001.960658.

[12] S. Haschemi, “Model transformations to satisfy all-configurations-
transitions on statecharts”, Proc. 6" International Workshop on Model-
Driven Engineering (MoDeVVa 2009), ACM press, Oct. 2009,
doi:10.1145/1656485.1656490.

[13] R. Binder, “Testing Object-Oriented Systems: Models, Patterns, and
Tools”, Addision-Wesley, 1999, Boston, USA, ISBN: 0-201-80938-9.

[14] G. Antoniol, L.C. Briand, M. Di Penta, and Y. Labiche, “A case study
using the round-trip strategy for state-based class testing”, Proc. 13"
International Symposium on Software Reliability Engineering (ISSRE
2002), IEEE press, Nov. 2002, pp. 269-279,
doi:10.1109/ISSRE.2002.1173268

[11

